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Abstract 
 

While the social status and position of women and men, girls and boys in Nepal - as elsewhere 

- is cut through by geography, social class, race, ethnicity, and age (life-stage), historically 

women and girls have been disproportionately subject to gender-based disadvantages, both 

legally enshrined and institutionalised as social norms and expectations (Matinga et al., 2019). 

 

In recent years, the Government of Nepal has sought to address major sites of gender-based 

disadvantage, introducing a series of legal and regulatory provisions to strengthen women’s 

position in society and advance gender equality. The 2015 Constitution mandated that women 

occupy a third of parliamentary seats, and introduced a raft of new rights previously withheld 

from women. Newly available rights include: rights to inheritance (lineage), to reproductive and 

maternal health provision, and equal rights in property and family matters (Government of 

Nepal, 2015). There followed a series of measures to address gender-based inequalities in 

educational attainment and in legally recognised use-rights over land (at a time when under 20% 

of women had land registered in their name (IOM, 2016). 

 

Despite these recent moves to diminish gender-based inequalities, women and girls in Nepal - 

as elsewhere - continue to be disproportionately subject to gender-based disadvantages, both 

legally enshrined and institutionalised as social norms and expectations (Care, 2015).  

 

Against this backdrop, this study investigated the potential for novel digital data sources to 

support gender-equitable development across Nepal.   

 

The study was organised around two work packages. In the first, we combined nationally 

representative, geo-located survey data with satellite imagery and mobile phone data, to model 

and map spatial variations and gender-based inequalities for three, key development indicators 

(literacy, agriculture-based-occupations, and births in health facilities) across Nepal.  

 

The results obtained for work package one demonstrate the power of modern and robust 

statistical methods to exploit geolocated survey data in new and innovative ways, so permitting 

the geographical scale of survey estimates to be greatly refined. We discuss the data 

requirements underpinning good model performance, contrasting, for example, the weaker 

results obtained for male literacy rates with results for the best-performing indicators. 

 

Notwithstanding the potential for results to be improved through the inclusion of additional 

information, we suggest that the showcased techniques can (potentially) be applied to a wide 

variety of development indicators. We outline the practical relevance of the study outputs for 

the design, implementation, and monitoring of gender-equitable development in Nepal.  

 

The second work package sought to leverage de-identified mobile phone data to produce 

robust, frequently updatable, information on gendered mobility and migration patterns, 

trajectories, and dynamics within Nepal. This entailed the development of methods to predict 
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gender for a ‘population’ of mobile phone subscribers. As part of this workstream, we 

administered a primary survey to validate gender for a representative sample of subscribers. 

 

To our knowledge, this study is the first time that a rigorous assessment of SIM-card 

(Subscriber Identification Module-card) sharing has been undertaken and incorporated into 

model architectures for demographic prediction. The study findings indicate that it is common 

for individuals to use one another’s SIM-cards, despite (overall) high rates of individual mobile 

phone ownership in Nepal. Our results suggest that the ‘single-SIM/single subscriber’ 

assumption (which has, to date, underpinned demographic prediction models) is untenable in 

the study setting.  

 

The uncertainty introduced by widespread SIM sharing in this setting is higher than traditionally 

allowed for by ‘classic methods’. The extent to which the pattern observed for Nepal holds in 

different settings is an empirical question. Ultimately, it may be necessary to reassess the 

performance of ‘classic methods’ to predict demographics from CDR data in light of previously 

undetected sources of uncertainty. This will depend on further research to assess the extent of 

(unacceptable) uncertainty posed by SIM use and sharing in different settings. 

 

Seeking to compensate for the uncertainty introduced by reported widespread SIM-sharing, we 

applied state-of-the-art semantic array programming - a robust, modular modelling approach - 

to model women’s and men’s mobility and migration patterns.  

 

While the model results are encouraging, indicating that analysis of individual CDR data can 

enhance our understanding of the spatial variation and temporal dynamics of sex and gender-

based inequalities, more work is needed to unravel the implications of SIM sharing for gender 

(and more broadly, demographic) prediction models. We make a number of recommendations 

in this regard.  
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List of Acronyms and Abbreviations 
 

ANN  Artificial Neural Network 

AUC Average area Under the Curve 

BGS  Bayesian Geostatistical 

CAPI  Computer Aided Personal Interviewing 

CBS Central Bureau of Statistics 

CCI Climate Change Initiative 

CDR Call Detail Records 

CEDA Centre for Environmental Data Analysis 

CIESIN Columbia University Centre for International Earth Science Information Network 

DEM  Digital Elevation Model 

DHS  Demographic and Health Surveys – the DHS Program assists developing 
countries worldwide in the collection and use of data to monitor and evaluate 
population,  health, and nutrition programs. 

D-TM   Data-Transformation Model – a D-TM is a conceptual unit which transforms a 
set of input data and model parameters into a corresponding set of output data. 
In this context, data are intended as array-based aggregations of (potentially 
uneven) elements. 

EA  Enumeration Area – is the operational geographic units for the collection of 

census data 

EOC Earth Observation Centre 

EPR Ethnic Power Relations 

ESA European Space Agency 

ET Total Evapotranspiration 

EVI  Enhanced Vegetation Index – is an 'optimised' vegetation index designed to 
enhance the vegetation signal with improved sensitivity in high biomass regions 
and improved vegetation 

GBT Gradient Boosting Trees 

GBV Gender-Based Violence 
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GeoSemAP  Geospatial Semantic Array Programming - geospatial application of the SemAP 

paradigm, where the conceptual units (D-TMs) of the modelling workflow are a 

composition of geospatial transformations and array-based D-TMs. 

GFSAD Global Food Security Support Analysis Data 

GHSL  Global Human Settlements Layer – is a dataset containing new global spatial 

information, evidence-based analytics and knowledge describing the human 

presence on the planet 

GIS  Geographic Information Systems 

GNI Gross National Income 

GPP Gross Primary Productivity 

GRUMP Global Rural Urban Mapping Project 

GUF Global Urban Footprint 

HDX Humanitarian Data Exchange 

INLA  Integrated Nested Laplace Approximations – is a package (in R) that exploit the 

approach of Integrated Nested Laplace Approximations to do approximate 

Bayesian inference for latent Gaussian models. 

MAE  Mean Absolute Error 

MIR Middle Infra-red reflectance 

ML Machine Learning 

MNO Mobile Network Operators 

MODIS Moderate Resolution Imaging Spectrometer 

MSE Mean Squared Error 

NDHS  Nepal Demographic and Health Survey 

NDVI Normalised Difference Vegetation Index 

NPP  Net Primary Productivity  

OSM  Open Street Map – is a project that creates and distributes free geographic data 

for the world. 

PCA  Principal Component Analysis 

PET Potential Evapotranspiration 
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PSU Primary Sampling Unit - refers to sampling units that are selected in the first 

(primary) stage of a multi-stage sample ultimately aimed at selecting individual 

elements 

QA Quality Assurance 

RMSE Root Mean Square Error 

RS Remote Sensing 

SDG Sustainable Development Goal 

SemAP  Semantic Array Programming - a computational modelling approach to 

compactly process arrays of data preserving the consistency of their 

underpinning semantics. SemAP is based on the modularisation of the modelling 

workflow into conceptual units (modules) of data-transformation (see D-TM), and 

on the systematic use of array-based semantic constraints. 

SIEVE   Selective Improvement by Evolutionary Variance Extinction - Training 

architecture for nonlinear computational models, such as artificial neural 

networks. 

SIM  Subscriber Identification Module 

SPDE Stochastic Partial Differential Equations 

SRTM Shuttle Radar Topography Mission - is an international research effort that 

obtained digital elevation models on a near-global scale from 56° S to 60° N 

USGS United States Geological Survey 

VI Vegetation Index 

VIF Variance Inflation Factor 

VIIRS  Visible Infrared-Imaging Radiometer Suite 

WDPA  World Database on Protected Areas 

WHO World Health Organization 
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Background and Objectives 
 

An equitable and efficient allocation of international aid relies on knowing where resources are 

needed most. Unfortunately, detailed, reliable and timely information on the spatial distribution 

and characteristics of intended aid recipients in many low income countries are rarely available, 

impacting the ability of aid agencies to effectively and equitably distribute resources to those 

most in need. 

 

To meet and assess progress towards the global Sustainable Development Goals (SDGs), it is 

crucial to improve the understanding of geographic variation in population wellbeing indicators 

such as health status, wealth and access to resources. 

 

Sustainable development will, however, not be possible if significant life opportunities are 

denied to women and girls. Women and girls should be provided with equal access to education, 

economic resources and political participation, and have equal opportunities in all fields and at 

all levels. Unfortunately, in Nepal, frequently women do not have equal access to resources, and 

it is critical to understand the impact on women’s welfare. 

  

Indices of need can be derived from demographic measures obtained from individual-based 

surveys, the majority of which now record anonymised spatial data on the locations of 

surveys.  In many cases, census data may provide the relevant information, and can be used to 

accurately depict the status of a population, sometimes at the level of enumeration areas or 

cities.  However, enumeration area-level census data can often be outdated or unreliable, or 

simply hard to obtain. 

 

An alternative approach to the overall measurement that census data provide is to use a 

random subsampling to obtain a representative sample of the population.  Geolocated 

household survey data from the Demographic and Health Surveys (DHS) 

(http://dhsprogram.com), for example, have been used extensively to provide broad-scale 

estimates of factors such child mortality, nutrition and literacy. Such surveys can be used to 

enrich census-based data or, where census data are outdated, unavailable or unreliable, infer 

values at unobserved locations using predictive modelling. 

  

One of the main aims of this study is to leverage the large-scale spatiotemporal data collected 

by Mobile Network Operators (MNOs) on mobile phone users in Nepal, to improve 

understanding of sex-disaggregated demographic and vulnerability characteristics, as well as 

their dynamics. To reach this objective we worked on developing innovative modelling 

techniques focused on splitting the CDR database by gender (based on the differences in men’s 

and women’s observable SIM use episodes), in order to support the mapping of women’s and 

men’s mobility, migration patterns and dynamics.  

 

Another objective of this project is to explore the feasibility of producing high‐resolution maps 

of a diverse set of sex‐disaggregated indicators of relevance to female welfare. High resolution 

maps of sex-disaggregated vulnerability characteristics are important for evidence-based 

policy making. These maps will, for instance, support better targeted interventions aimed at 
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increasing female resilience and education. A single map provides a snapshot of the spatial 

distribution of given conditions or challenges. We aim at providing a series of updatable maps: 

as mapping becomes dynamic, changes and progress over time and across space can be 

tracked and monitored. 

 

The applied statistical methodology was built upon a combination of GPS‐located household 

survey data, satellite‐derived covariate datasets and individual level Call Detail Record (CDR) 

data, producing high‐resolution (1km2) gridded datasets of key indicators together with 

associated uncertainty. 

 

To ascertain that the data and maps are used and understood by policy makers, we are working 

closely with the Central Bureau of Statistics (CBS) in Nepal.  
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Context 
  
Nepal is in the midst of a far-reaching process of political, social, and economic transition. It is 

now more than a decade since the 1996–2006 ‘People’s War’ came to an end. The resulting 

peace dividend is manifest in improved infrastructure, including road networks and electricity, 

and service provision, including basic health and education (Khatiwada et al., 2018; Matinga, 

2019). The federalist project, ushered in by the 2015 Constitution, has set in motion the 

devolution of political authority, with legislative powers divided among Centre, Province, and 

local government levels. While this process remains incomplete and subject to contestation, it 

symbolises an important rescaling of political authority and accountability within Nepal 

(Nightingale et al., 2019). 

  

Gender roles and relations are similarly in a period of flux (Matinga et al., 2019). Since 2007, 

successive rounds of legal and regulatory provisions have sought to reverse pervasive gender-

based discrimination and strengthen women’s position in society vis-a-vis men. Nepal’s 2015 

Constitution mandated that women occupy a third of parliamentary seats and secured a raft of 

rights historically withheld from women.  Newly formalised rights include: rights to inheritance, 

to reproductive and maternal health provision, and equal rights in property and family matters 

(Government of Nepal, 2015). There followed a series of measures to address gender-based 

inequalities in educational attainment and in legally recognised use-rights over land (at a time 

when under 20% of women had land registered in their name) (IOM, 2016). In tandem with 

formal legislative and regulatory moves to enhance gender equality, there is evidence that the 

social and institutional strictures governing gender roles, relations, and responsibilities are 

loosening (Khatiwada et al., 2018). While, inequalities based on gender, as well as class, caste, 

religion, and ethnicity remain pervasive (NPC 2017), change is discernible (Khatiwada et al., 

2018; Matinga, 2019). 

  

Both the social constitution of gender and the spatial distribution of need have been destabilised 

by high levels of, predominantly male, overseas labour migration in recent years (Zharkevich, 

2019). The gendered dimensions of overseas migration, including bans and age bars to control 

women’s migration (Grossman-Thompson 2016) and the valorisation of migrant men as 

displaced ‘breadwinners’ have functioned to both uphold and challenge hegemonic 

masculinities and ideal femininities in vital ways (Sharma et al., 2014; Maycock, 2017; Blanchet 

and Watson, 2019). 

 

The rapid growth in overseas labour migration is part of a wider shift in livelihoods. While Nepal 

remains a predominantly agricultural economy, with over 65% of the population dependent on 

farm-based livelihoods, agriculture’s share of GDP decreased from almost half (48%) in 1990/91 

(MoF, 2013) to less than a third (29%) in 2016/17 (MoF, 2018). Remittance-income and non-

farm enterprise have risen in importance over the same period (MoF, 2018). Improvements to 

physical and communications infrastructure, increased trade, and a revitalised tourism industry 

– together with the international demand for low-paid labour – have been credited with 

expanding livelihood options, even in very remote areas of the country (Khatiwada, 2019). In 

tandem with these shifts, economic returns to agriculture have steadily declined, as pressure 

on land, water, and forest resources has intensified with climate change (Bartlett et al., 2010).  
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The dominance of subsistence and / or low productivity farm-based livelihoods, and the 

uncertain, often low, sometimes negative, returns to market-oriented agriculture, non-farm 

enterprise, and overseas migration are reflected in the poverty figures. While aggregate poverty 

has decreased overall in recent years, the most recent available figures indicate that close to a 

quarter (23%) of Nepalis live in extreme poverty (NPC 2017), with over a third (36%) of children 

under five exhibiting stunting (i.e. malnutrition) (MoH et al., 2017). Poverty is profoundly 

gendered in Nepal, with women’s marginalisation from market labour and concentration in 

unpaid or poorly paid market labour, rendering them more vulnerable to extreme poverty 

(Adhikari and Hobley, 2015). 

  

The situation is heightened in rural areas, where women are less likely to be in regular work - 

and where those in work are subject to notable wage-discrimination (Yamamoto et al., 2019). 

While the market labour participation rate for men aged 15-49 stands at 78%, the equivalent 

figure for women is 57%. The feminisation of agriculture is starkly underscored by the data, with 

33% of working men are engaged in agriculture, compared with 70% of working women (MoH 

et al., 2017). Market labour and wage discrimination reinforce the perceived low returns to 

educating girl-children in rural areas, so reproducing inequalities in men’s and women’s 

educational attainment. The most recent figures available (MoH et al., 2017) show that 39% of 

women, aged 15-49, resident in rural areas have secondary schooling. This compares with 62% 

or men in the same cohort. The equivalent figures for women and men residing in urban areas 

are 57% and 76% (MoH et al., 2017). 

 

Detailed, actionable information on the spatial and social distribution of needs and inequalities 

is essential in this changing context. As political devolution proceeds, demand for such data is 

likely to intensify. In the remainder of this report, we present the results of analysis to detect 

and predict gender-based disparities at highly localised level, for the country as a whole. 
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Material and methods  
 

1. Primary Survey Data  
 

1.1 Rationale 
 

A major aim of the study is to assess the scope for gender to be predicted for a population of 

mobile phone subscribers based on ‘demographic traces’ detectable in CDR data. While the 

MNO subscriber database records gender for the subscriber, this information is both 

incomplete (missing in up to 15% of cases), and un-validated. A broader challenge concerns the 

in-practice distinction between SIM subscriber and SIM user, i.e. the extent to which the 

subscriber-of-record and user of a SIM can be assumed to be identical. Another important 

consideration is the extent to which SIM usage events can be assigned to a single, gendered, 

individual. While powerful methods are available to predict individual characteristics from CDR 

traces alone, they rely on strong assumptions. 

 

Primary survey data, gathered for a probabilistically sampled subset of the subscriber base, 

offer a means to ‘anchor’ prediction models in validated data. Work in this arena is part of a 

nascent but growing field to integrate novel and traditional datasets, so leveraging the 

advantages of both1. The overall objective of the primary survey is to support the development 

of modelling tools to predict SIM user’s gender from routine mobile phone data. Two 

interrelated survey aims follow: 

  

i.   Validate gender for a representative subsample of SIM records 

 

ii. Test the assumption that activity observed for a specified SIM wholly or mainly 

corresponds to a single individual 

 

Survey linkage’ performs a second important function, providing data to enable bias and 

uncertainty to be quantified and compensated for in the final model architecture. This is 

important, since the generation of CDR ‘profiles’ depends on a number of bracketed 

assumptions around the wider generalisability of profiles for the ‘population’ of (relatively active) 

mobile phone users to the national population (or other population of interest).  

 

1.2 Sample design 
 

A telephone-mode survey was planned with a probabilistically sampled subset (n = 4,268) of 

SIM users drawn from a database maintained by the partner MNO. At the time of the sample 

selection, the subscriber database held information on approximately 15 million SIMs, and their 

registered subscribers. 

                                                        

1Recent work has focussed on deriving gender (Jahani et al 2017), employment status (Almaatouq et al 2015), 

education (Sundsøy 2016a), occupation (Sundsøy et al 2016a), household wealth (Šćepanović et al 2015), and 

individual income (Blumenstock et al 2015, Sundsøy et al 2016b, 2016c).  
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We utilised a stratified single-stage without replacement (stsrswor) design (95% CI; e= 0.015), 

exploiting features of the subscriber database sampling frame and CDR dataset to produce a 

geographically balanced sample across Nepal’s seven provinces and three ecological zones 

(Terai, Hilly, Himal), and allow for independent estimates for rural and urban areas (figure 1.1). 

 
Figure 1.1: Sample distribution, primary mobile-phone-mode survey. Note that for commercial sensitivity purposes, 
the sample locations displayed here have been obfuscated with random noise assigned using a buffer of 10km for 
urban, and 20km for rural, sample locations. 
 

The method for ‘home location’ estimation, to enable a geographically balanced sample, is 

detailed in the subsequent section. Rural residents2 and subscribers registered as female were 

oversampled relative to urban and male subscribers3 to address under-representation of these 

groups in the sampling frame (the CDR data and subscriber database). Figure 1.2 provides an 

overview of the sample selection process. 

 
Figure 1.2: Schematic, sampling a statistically representative subset of subscribers 

                                                        
2Analysis of CDR home location demonstrated the MNO subscriber database to be skewed towards urban residency 

(75% urban to 25% rural). We oversampled rural home locations at a 50:50 sampling rate. 
3The MNO subscriber database recorded 25% of subscribers as female and 60% as male. The field for sex was 

vacant for 15% of records. We merged subscribers with vacant sex fields with the male listing prior to sampling 
(since proportionately more likely to be men) to avoid systematic exclusion of subscribers with no recorded sex. 
Subscribers recorded as female were oversampled with equal (i.e. 50:50) sampling based on recorded sex. 
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The initial sample size was inflated to insulate results from non-response (planning was based 

on a conservative total contact rate of 40%, adjusted on the basis of piloting). Favouring 

simplicity, we initiated a standard ‘sample replicates’ approach, with selected sample units 

randomly assigned to a series of ‘batches’ for consecutive release until the required sample size 

was obtained4. A protocol for repeat calls was instituted, requiring three contact attempts to be 

made to survey each sample unit, with calls made on different days and at different times of 

the day, prior to declaration as non-response5.   

 

As detailed below, non-trivial anomalies became apparent in the survey data during cleaning. 

The anomalies were indicative of response and / or data-entry error, though the source(s) of the 

error not be definitively established. Confidence in the reliability and validity of the data was 

undermined, particularly with regard to data on mobile phone sharing. As a result, we undertook 

a second survey round with a probabilistically selected subset of the original respondents, to 

conduct reverse-record checks. The objective was to assess the magnitude and characteristics 

of misreporting. A sampling rate of 0.25 (n = 1,294) was applied to the original sample of 

respondents, retaining the stratified single-stage without replacement (stsrswor) design.  

 

1.3 Instrument development 
 

The survey instrument was developed by Flowminder’s senior survey statistician, with input 

from the project PI. Modules included: individual socio-demographics, household composition 

and characteristics (including a condensed asset-based wealth index), and mobile phone usage 

and sharing. These modules were prefaced by a participant information script, an informed 

consent script and record of consent, and eligibility and identification fields. The survey was 

designed to take no more than 12 minutes to complete. Item and response code wording were 

aligned with validated 2016 Nepal Demographic and Health Survey instruments where feasible 

(bearing in mind the two surveys’ different modes).  

 

The module on mobile phone usage was developed following a review of prior research. The 

utility of past work to predict demographics from behaviour traces in de-identified CDR data 

was limited in this regard. The extent, characteristics, and implications of SIM sharing remain 

an (acknowledged) ‘black box’ issue for the field (Blumenstock et al 2015). 

 

In developing the mobile phone usage module, we reviewed the peer-reviewed and grey 

literature on technological uptake in the Global South and the ‘digital divide’. Surveys measuring 

mobile phone sharing were identified for Egypt (Samuel et al., 2005), Namibia (Stork, 2005), 

Botswana (Sebusang et al., 2005), Ethiopia (Lopez, 2000), Tanzania (Goodman, 2005), South 

Africa (Goodman, 2005), India (Rangaswamy and Singh, 2009), and the Philippines (Lopez, 

2000). The literature review revealed substantial variation in questionnaires designed to 

measure ostensibly the same construct of interest (mobile phone sharing). In the absence of 

standardised, validated questionnaires - or question banks -, idiosyncratic tools have tended to 

be developed on a case-by-case basis. The identified studies exclude (discussion of) statistical 

                                                        
4See Vallient et al 2012: 177 for details of this approach and for comparison with alternative methods 

5‘Hard refusals’ were exempt from repeat calls. 
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assessment of the reliability and validity of the developed questionnaires, further limiting their 

scope to support development of standardised tools. 

 

A parallel research stream investigating SIM sharing practices with the objective of improved 

representativeness for single frame mobile-phone-mode and dual frame telephone-mode 

surveys proved more promising. Here, the concern is with the development of respondent 

selection procedures, and the proper computation of inclusion probabilities and design weights, 

for the mobile-phone-mode sample (Busse and Fuchs 2013, 2014; Ghandour et al., 2019).  

 

Research on inclusion probabilities for mobile-phone-mode surveys has focused on the US and 

Europe, and demonstrates that SIM sharing occurs even in contexts where individual mobile 

phone ownership is ubiquitous (Busse and Fuchs 2012, 2014). There is evidence, too, that SIM 

sharing may be more prevalent among subpopulations with above median incomes, suggesting 

that, at least in some settings, economic constraint is not the deciding factor (Busse and Fuchs, 

2013). Published efforts to statistically validate questionnaires were limited to a few select 

studies within this literature. 

 

The absence of standardised definitions, operationalisation, and measurement hampers 

comparisons between different surveys and in different settings, while also increasing scope 

for questionnaire-related error to inflate total survey error6. The complexity of the ‘mobile phone 

sharing’ construct amplifies the difficulties. Busse and Fuchs (2013), reflecting on their own and 

others’ attempts to measure mobile phone sharing, call for new, “less burdensome and less 

difficult sharing questions”. In developing the questionnaire, we prioritised simplicity and 

parsimony in our definition and operationalisation of ‘mobile phone sharing’, mindful that 

numeracy and literacy are subject to wide variations in the study setting.  

 

Given the absence of standardised, validated instruments, we also imported insights from 

ethnographic and qualitative research, where mobile phone sharing has been studied in terms 

of (fictive) kin relations, social networks and connectivity, gift giving, and as artefacts implicated 

in the reproduction/subversion/ (re)enforcement of social norms. Within this literature, gender 

and generation or life-stage emerge as prominent sites of differentiation in mobile phone 

access and usage. There is evidence too, that sharing within close kin and friendship networks 

can be so ubiquitous as to be taken-for-granted, such that respondents do not consider joint 

use of mobile phones by their spouse or child to constitute ‘sharing’ (Wright-Steenson & Donner 

2009). This literature provides further evidence on the heterodox drivers of sharing, noted 

above. A wide variety of mobile phone sharing practices are identified in which economic 

constraints are either absent, or partial factors (Wright-Steenson & Donner 2009). It must be 

noted here that the social dynamics of mobile phone use in Nepal have been little studied to 

date (research by Matinga et al., 2019) on the gender contours of mobile phone uptake and 

usage in two districts in rural Nepal, is a notable exception). 

 

The broader literature on telephone-mode surveys cautions against the use of lengthy 

respondent selection procedures, on the basis that the increased respondent burden entailed 

                                                        
6Studies in which floor or ceiling effects are discernible, or where variance in responses is limited by a departure from 

standard item response anchors indicate the presence of questionnaire-related error. 
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can considerably reduce the response rate. This consideration was balanced by the need for 

the respondent to be knowledgeable about mobile phone usage and sharing. A single 

respondent selection question was included to determine if the person who answered the call, 

the ‘gatekeeper’, was a or the ‘main user’7. Where s/he answered affirmatively the survey 

proceeded with the original respondent. Otherwise, a request was made to speak to a ‘main 

user’ if available. When a main user was unavailable, a call back was arranged for when s/he 

was expected to be present. Analysis of contact and response rates (Table 1.1, below) indicates 

that the inclusion of respondent selection items did not adversely impact contact and response 

rates.  

 

We adopted an expansive definition of ‘mobile phone sharing’, consistent with the survey 

objective to ascertain gender for all persons using the SIM. Respondents were first asked to 

report the frequency (never, exceptionally, rarely, sometimes, often) of their own usage: ‘How 

often do you use this mobile phone number to make or receive calls or send or receive text 

messages?’. Respondents were then asked: ‘Does anyone other than you ever make or receive 

phone calls or send or receive text messages using this mobile phone number?’ Where the 

respondent answered in the affirmative, s/he was asked to list each sharer. Response items 

were coded as gendered kin (e.g. wife / husband) and non-kin relations (e.g. employer 

neighbour, friend).  

 

Where non-kin relationships were specified, a follow-up item recorded the sharer(s) gender. 

Sharing frequency (never, exceptionally, rarely, sometimes, often) was recorded for each person 

listed. In closing the mobile phone use module, all respondents (i.e. both those reporting sole 

use and those reporting shared use) were asked: ‘If this mobile phone number rings when you 

are not in the vicinity, will the call be answered by another person?8 (never, exceptionally, rarely, 

sometimes, often). Relationships were recorded as above in affirmative instances. The purpose 

of this latter question was to capture non-purposive ‘sharing’ episodes, which may not be 

regarded as ‘others’ usage’ by respondents, but which are observable as CDR ‘events’. 

The choice of the five-item response scale to measure usage and sharing frequency is 

consistent with best practice for response anchoring. It is also consistent with measures used 

by the few surveys on mobile phone usage that have published results of statistical validation 

(Busse and Fuchs, 2012, 2013, 2014). Pilot data were analysed to assess variance in responses 

and confirm the absence of floor or ceiling effects. The selection of the ‘ever’ reference period 

similarly proceeded following testing and piloting of a variety of reference periods (including, ‘in 

the past 24 hours’, ‘in the last seven days’, ‘in the last four weeks’, and ‘thinking about a normal 

day…’). 

 

The questionnaire was independently translated and back translated both prior to and 

subsequent to piloting (following revisions to item and response code wording based on 

analysis of pilot data).  In addition to Nepali, the questionnaire was translated and administered 

                                                        
7We gave due consideration to instituting respondent selection mechanisms where a ‘gatekeeper’ reported that s/he 

was a main user and that the phone number was used in equal shares among a group of people, in order to reflect 
unequal inclusion probabilities. The decision was taken to address unequal probabilities of selection post-hoc, on the 
basis of the information collected on ‘sharers’ and to minimise respondent burden at the selection phase.  
8This phrasing is adopted (in slightly adapted form) from a questionnaire developed by Busse and Fuchs (2012, 

2013) to assess the extent and characteristics of ‘mobile phone sharing’ in Germany.  
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in Maithili, Bhojpuri, Tharu, Tamang, and Newari languages, to minimise the opportunity for 

systematic exclusion of minority language speakers.  

 

1.4 Implementation 
 

The study’s partner MNO stipulated that the survey be implemented by its preferred market 

research firm, using CAPI (computer aided personal interviewing) software developed in-house. 

These conditions reflect the data’s commercial sensitivity (section 2.4, below, details our 

technical and organisational data protection and privacy safeguards). The implementing firm 

had many years’ experience conducting market research for the MNO, including conducting 

telephone-mode surveys with the MNO’s customer base. Favouring quota sampling, the firm 

had only limited familiarity with representative survey design and implementation. For this 

reason, simplicity in the survey’s design and implementation was favoured as far as a 

probabilistic sample design would allow.  

 

The telephone-mode survey was administered by 16 enumerators based in a call-centre in 

Kathmandu. While a majority of the enumerators were existing employees of the implementing 

firm, three additional staff were hired to extend coverage of minority languages. Supervision 

was provided by management staff at the implementing firm. The MNO provided logistical 

support prior to and during the survey, as well as day-to-day survey coordination. 

  

Flowminder’s senior survey statistician delivered six days of training for enumerators and 

supervisors, and oversaw three days of survey piloting at the implementing firm’s Kathmandu 

office in the fortnight prior to the survey launch. During this visit, procedures for survey 

implementation, and for daily data transfers were initiated and tested to enable the survey 

statistician to conduct monitoring, quality assurance, evaluation, and course-correction 

activities remotely over the course of the survey.  

  

The survey took place over a period of six weeks, from the 13thof December 2017 to the 25thof 

January 2018. It was scheduled to fit with the implementing firm’s existing commitments. Calls 

were conducted between 08:30 and 18:00, seven days a week. 

  

Data were stripped of direct identifying features (including names and phone numbers) before 

being uploaded to the server for analysis. The procedure for daily uploads to permit remote 

monitoring and course correction was rendered unworkable by a series of server stoppages. 

The survey data were received in two batches in late January 2018, upon conclusion of the 

survey. In the absence of daily progress review, sample replicates continued to be released for 

several days after the desired sample size had been achieved. As a result, the final sample (n = 

5,180) was inflated relative to the specified sample size (n = 4,268). 

  

As noted above, preliminary analysis of the survey data identified non-trivial anomalies and 

internal inconsistencies indicative of response error and/or data entry error. A major source of 

concern was the scope for data entry error to occur owing to the need for the enumerator to 

manually enter the phone number dialled each time a survey unit was contacted (a result of the 

limited functionality of the CAPI software, preventing survey record linkage with the CDR). As 
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part of a broader root-cause analysis, a validation exercise was undertaken with 5% of the 

original respondents (n = 248). The validation survey took place over four days in early February 

2018. The survey tool included a sub-set of six questions, repeated verbatim from the original 

survey and covering items with limited or predictable time variance (respondent sex, age, usual 

address, education level, and marital status). On the basis of further anomalies detected 

between the original survey responses and the validation survey, a follow-up round of data 

collection was planned with a 25% subsample (n = 1,294) of the original survey respondents.  

  

The 25% cap was instituted in response to budgetary and logistical considerations. In light of 

the anomalies detected in the original survey data, the MNO agreed to the use of third-party 

CAPI software (with functionalities to limit scope for systematic data-entry error, including pre-

entry of phone numbers to automate phone number assignment and de-identification, as well 

as hard-coding of survey routing and flags), and the presence of an experienced independent 

survey coordinator, tasked with directly managing and supervising survey implementation and 

conducting a parallel validation exercise for a 10% sub-set of survey units.  

  

The timing of the follow-up survey was determined by the implementing firm’s availability, given 

existing, competing, commitments. Following a series of postponements, data collection 

commenced 12 months after the initiation of the original survey exercise (December 2018 to 

January 2019), following five days of enumerator training and two days of piloting delivered by 

Flowminder’s senior survey statistician. The questionnaire for the second round was 

streamlined to include only the socio-demographic and SIM sharing modules (the participant 

information script, informed consent script and record of consent, and eligibility and 

identification sections were retained). The second survey round was free from the anomalies 

and internal inconsistencies identified in the original data. Comparison of the two datasets 

could not conclusively establish the origins of the anomalies identified in the first round of data 

collection, however, meaning that analysis of SIM sharing was limited to the 2018/2019 subset 

of data.  

 

1.5 Results 
 

The survey obtained a 44% contact rate, 1,731 contacts were made from a total of 3,952 dialled 

calls. The response rate for contacted units was 84% (n = 1,461). Item missing data for key 

variables (including respondent gender) reduced the usable sample size to 1,280. 

 
Table 1.1: Contact and response rates of the survey 

Contacts n % 

Total dialled 3,952 100% 

Phone did not ring 1,637 41.4% 

Phone rang but no one answered 584 14.8% 

Total non-contact 2,221 56.2% 

Contact rate 1,731 43.8% 
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Response n % 

Total contacted 1,731 100% 

Unstable / inaudible connection 93 
  5.4% 

Respondent unavailable 41   2.4% 

Age ineligible (<16 years of age) 21   1.2% 

Consent withheld 93   5.4% 

Language barrier 3   0.2% 

Other 19   1.1% 

Total unit non-response 270   15.6% 

Response rate 1,461 84.4% 

 

The sampling strategy produced a well-balanced sample, compensating for the under-

representation of women in the sampling frame, via equal (i.e. 50:50) sampling of records 

across all strata. Subscribers with vacant gender fields (15% of records) were merged with the 

male listing prior to sampling (since proportionately more likely to be men) to avoid systematic 

exclusion of subscribers with no gender recorded. Oversampling produced a female:male ratio 

of 43:579.  

 

The deviation from the 50:50 sampling rate is a result of the discrepancy between the registered 

and true user(s) of the SIM as well as the ubiquity of SIM sharing (discussed below). The survey 

data demonstrate the limited scope for administrative data held in the subscriber database to 

support demographic prediction models. Overall, the subscriber database-recorded-sex 

differed from self-reported main user sex for 32% of survey units (and was missing from the 

former in a further 7% of observations). 28% of female respondents who reported that they were 

a or the main user of the mobile phone number were recorded as male in the subscriber 

database (a further 5% had vacant sex fields). The equivalent figures for male respondents were 

36% (recorded as female) and 8% (vacant sex fields).  

 

Geographical stratification produced a rural urban ratio of 42:58 (based on self-reported ‘usual 

residence’)10. This compares with a rural urban ratio of 25:75 for the sampling frame (based on 

CDR analysis to assign ‘home location’). The deviation from the sampling rate (50:50) can be 

attributed to the different definitions employed (usual residency vs mobile phone CDR activity). 

Timing (and time-lag) may also play a role (usual home location was calculated based on the 

tower locations of CDR events in the twelve months preceding the first survey round).  

 

                                                        
9This represents a slight deterioration of the gender ratio for the first survey round (46:54, n = 2,382 women and 

2,796 men) 
10A deterioration from the first survey round’s rural:urban ratio of 46:53. 
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Table 1.2 presents the (unweighted) sample characteristics for the 2018/2019 survey data 

 
Table 1.2: Summary statistics (unweighted 2018 -2019 data) 

 Women 
(n = 555) 

Men 
(n = 725) 

 
 
p 

 n mean SD min max n mean SD min max 

Age (years) 555 32.6 11.9 16 89 725 35.1 14.2 16 91 0.003 

Education (years) 555 6.3 4.6 0 11 724 8.1 3.7 0 11 0.000 

Marital status (married) 555 0.79 - 0 1 725 0.70 - 0 1 0.000 

Residence (rural) 540 0.45 - 0 1 722 0.40 - 0 1 0.060 

Household size 554 5.1 2.5 1 24 724 5.6 2.9 1 19 0.001 

Mobile phone sharing:  

Use frequency - self 

527 3.5 0.6 0 4 683 3.7 0.6 0 4 0.000 

Mobile phone sharing:  

Use frequency  - others 

527 1.3 0.5 0 4 683 1.2 1.0 0 4 0.285 

Mobile phone sharing:  

Number of users 

555 1.8 1.0 1 6 725 1.7 0.9 1 7 0.388 

 

Shared SIM use was reported by 47% of respondents. 12% of respondents reported that one or 

more people of the same gender ‘often’, ‘sometimes’, or ‘rarely’ used the SIM to make or receive 

calls or send or receive messages. 35% of respondents reported mixed-gender use of the SIM 

‘often’, ‘sometimes’, or ‘rarely’. The remaining 53% of respondents reported either that s/he 

alone used the SIM (52.6%) or that others used the SIM only in exceptional circumstances 

(0.6%). There was no statistically significant difference in women’s and men’s reported 

tendency to share SIMs. 48% of women reported shared use compared with 46% of men (p = 

0.453). 

 

For both women and men, SIM sharing tended to be highly concentrated within the family. Just 

8% of women and 8% of men who disclosed SIM sharing reported that a non-family member(s) 

used the SIM ‘often’, ‘sometimes’, or ‘rarely’. Spouses and children dominated reports of sharing. 

45% of women and 48% of men who disclosed sharing reported that their spouse used the SIM 

‘often’, ‘sometimes’, or ‘rarely’. 42% of women and 45% of men reported that their child(ren) used 

the SIM ‘often’, ‘sometimes’, or ‘rarely’. Sharing between siblings (27% of women and 18% of 

men reported use by a sibling) was also relatively common. 

 

Table 1.3 presents the results of regression analysis of gender-based variation in sim sharing. 

The stratified survey design is controlled for in the analysis, and design weights, calculated on 

the basis of secondary survey data, are applied. Reported standard errors are based on 

Jackknife estimation.  
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Table 1.3: Ordinal logistic regression, SIM usage and sharing frequency 

 Frequency of sim usage - self Frequency of sim usage - others 

OR 
Jackknife 
SE 95% CI OR 

Jackknife 
SE 95% CI 

Gender (women) 0.141** 0.128 [0.024 0.833] 0.313*** 0.296 [0.049 2.000] 

Age (years) 0.980***  0.010 [0.961 1.000] 1.006*** 0.008 [0.990 1.021] 

Education (years) 1.083*** 0.036 [1.016 1.156] 1.017*** 0.034 [0.953 1.085] 

Marital status (married) 0.989*** 0.325 [0.519 1.884] 1.592*** 0.485 [0.875 2.895] 

Household size 0.978*** 0.041 [0.900 1.062] 1.019*** 0.043 [0.938 1.106] 

Usual place of residence (rural) 1.465*** 0.295 [0.988 2.174] 0.894*** 0.153 [0.640 1.250] 

Woman*Age (years) 1.023*** 0.016 [0.993 1.055] 1.008*** 0.015 [0.978 1.038] 

Woman*Education (years) 1.054*** 0.049 [0.961 1.155] 1.014*** 0.048 [0.924 1.112] 

Woman*Marital status (married) 1.672*** 0.894 [0.586 4.772] 1.523*** 0.753 [0.577 4.018] 

Woman*Household size 0.996*** 0.066 [0.875 1.134] 1.100*** 0.075 [0.962 1.257] 

Woman*Usual place of residence (rural) 0.706*** 0.204 [0.401 1.244] 1.426*** 0.388 [0.836 2.432] 

/cut1 -5.635*** 0.867 [-7.336 -3.934] 1.037*** 0.580 [-0.101 2.175] 

/cut2 -4.620*** 0.721 [-6.035 -3.205] 1.060*** 0.580 [-0.079 2.199] 

/cut3 -3.496*** 0.625 [-4.722 -2.271] 1.333*** 0.585 [0.186 2.480] 

/cut4 -1.065*** 0.569 [-2.181 0.052] 5.296*** 0.732 [3.859 6.733] 

 n = 1,189 

F(11, 1178) = 5.83 F( 11, 1178) = 1.81 

Prob > F = 0.000 Prob > F = 0.0481 

 

The analysis demonstrates statistically significant gender-based variation in frequency of own 

sim usage (with women’s use significantly less frequent than mens), controlling for age, 

education, marital status, household size, and rural residency. There is, however, no statistically 

significant difference in the frequency with which women and men report others’ use of the 

phone number. 

  

 

2. Mobile network operator data  
 

Large-scale spatio-temporal data collected by the study’s partner MNO supported both of the 

project work packages. A series of CDR feature sets were generated from the ‘raw’ CDR data to 

produce:  

 

1. User profiles hypothesised to be predictive of gender 

2. Geospatial layers hypothesised to be predictive of human presence 
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2.1. Data Pipeline Management 
 

A high-level overview of the Flowminder’s secure end-to-end analytics process is presented in 

Figure 2.1. 

 
Figure 2.1. Flowminder analytics end-to-end process 

 

Flowminder jointly manage a remote-access analytics platform hosted on Ncell premises in 

Kathmandu. The platform provides a secure environment for the processing of pseudonymised 

Call Detail Records (CDRs), together with supporting datasets, under an agreed set of data 

governance and collaboration principles.  

 

2.2. Data Extraction and Preparation 
 

The following MNO datasets were prepared with the assistance of Ncell staff, and quality 

checked, prior to ingestion into the Flowminder analytics platform. 

 

Pseudonymised voice call records: containing the time, duration, location, and parties of each 

voice call. 

 

Pseudonymised ‘top-up’ records: containing daily financial credit ‘top-up’ totals and counts per 

recharge type per subscriber. 

 

Cell attribute tables: containing the geolocation of individual cells in the network. 

 

Subscriber gender-of record: containing, where available, the gender of the subscriber as 

recorded on the Registration Form submitted on purchase of a SIM card. The registration form11 

provides for three responses to ‘gender’ (with response codes corresponding to sex): ‘male’, 

‘female’, and ‘other’. 

                                                        
11Available here: https://www.ncell.axiata.com/Upload/forms/Individual%20Subscription%20Form.pdf 
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2.3. Supporting Primary Survey Sample Selection 
 

The CDR data was first processed to support the selection of a representative subset of 

subscribers for the primary survey: 

 

1. Active subscribers were determined as those making or receiving at least one call during 

the month of November 2017. This strategy was employed to minimise the inclusion of 

inactive subscribers. 

 

2. Active subscribers’ ‘home municipality’ (Administrative Level 2) was determined over 

the entire year of 2016. The home municipality was defined as the modal location of the 

last call of the day made or received by a subscriber over the course of 2016. 

 

3. Ncell subscriber database records were used to split the remaining subscribers into 

male and female listings. Subscribers where gender was recorded as missing (15%) 

were merged with the male listing, as discussed above. 

 

4. Active female and male subscribers were grouped by home municipality, based on: 

 

a. Province, as presented in Figure 2.2 

b. Ecological zone, as presented in Figure 2.3a 

c. Urban - Rural designation, as presented in Figure 2.3b 

 

 
Figure 2.2. Map of Nepal at province level. 
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Figure 2.3a. Nepal ecological zone designation by 

municipality. Mountain [grey], Hill [green], Terai [yellow], 

Kathmandu Valley [red]. 

 

Figure 2.3b. Nepal urban - rural designation by 
municipality. Urban [red], Rural [green]. 

2.4. Supporting Privacy-Preserving Data Linkage 
 

The development of CDR-based gender-prediction models relies upon individual-level linkage of 

primary survey data and CDR data for the subset of subscribers participating in the telephone-

mode survey. This requires the institution of a range of technical, organisational, and protocol-

based safeguards to maintain individual’s privacy and insure their data is protected.  

 

Processing of the project data is distributed across a triad of stakeholders, namely SoftTech 

(primary survey implementation), Ncell (CDR) and Flowminder (analytics). A privacy-preserving 

data linkage protocol was implemented, whereby SoftTech only have access to the survey data 

for the period of the survey, Ncell only have access to CDR data, and Flowminder only have 

access to linked de-identified phone survey records and CDR data. The protocol consists of key-

matching tokens being provided by Flowminder to Ncell alongside the pseudonymised phone 

numbers of the survey participants. By propagating the tokens alongside the data records 

exchanged between the three parties, Flowminder could successfully match the de-identified 

survey and CDR records of the survey participants: 

 

Provided by 

Ncell to 

Flowminder 

HASHED 

MSISDN 

HASHED 

IMEI 

CELLID DURATION TAC ... 

Provided by 

Flowminder to 

Ncell 

HASHED 

MSISDN 

MSISDN 

TOKEN 

    

Provided by 

Ncell to Soft 

Tech 

MSISDN MSISDN 

TOKEN 

    

Provided by 

SoftTech to 

Flowminder 

 MSISDN 

TOKEN 

SEX PHONE 

SHARING 

SOCIO- 

DEMOGRAPHIC

S 

... 
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2.5. Subscriber Profile Extraction 
 

A set of subscriber profiles to support the gender prediction modelling was extracted from voice 

call and top-up data for 2016 using the following strategy: 

 

1. Daily Locations of subscribers were extracted for each day of the year. Daily locations 

were defined as the location of the cell to which a subscriber was connected for their 

last call of the day. 

 

2. Home locations of subscribers were calculated for each month. Home locations were 

defined as the modal daily location of a subscriber over a month. 

 

3. The set of voice call features listed in Table A2.1 (appendix A) was extracted for each 

subscriber for each week of the year, and the mean and std were calculated 

 

4. The set of topup features listed in Table A2.1 (appendix A) was extracted for each 

subscriber for each month of the year, and the mean and std were calculated 

 

 

2.6. Geospatial CDR Feature Extraction 

 

Additionally, a series of geospatial features were computed to support work package one (high 

spatial resolution estimation of gendered development indicators), features were derived from 

the voice call data for each month of 2016. The monthly aggregates were extracted using the 

following strategy: 

 

1. Daily Locations of subscribers were extracted for each day of the month. Daily locations 

were defined as the location of the cell to which a subscriber was connected for their 

last call of the day. 

 

2. Home locations of subscribers were calculated for each month. Home locations were 

defined as the modal daily location of a subscriber over the month. 

 

3. The set of voice call features listed in Table A2.2 (appendix A) was extracted for each 

subscriber for each month of the year. Each feature was spatially aggregated using the 

subscriber Home Location. 

 

4. The set of device features listed in Table A2.2 (appendix A) was extracted for each 

subscriber using the subscriber’s most used device. Each feature was spatially 

aggregated using the subscriber’s Home Location during each month of 2016. 

 



 

29 | 85 

 
3. Georeferenced DHS Indicators  
 
3.1. Secondary survey data: 2016 Nepal Demographic & Health Survey 
  

The indicators selected for high resolution mapping were estimated using data from the most 

recent round of the Nepal Demographic and Health Survey (NDHS) (MOH et al, 2017). The 

Demographic and Health Survey is an international quinquennial cross-sectional survey 

programme developed and coordinated by ICF International and funded by USAID. It is a multi-

topic survey, with modules covering: demographics; household composition and 

characteristics; livelihoods, migration, and employment; reproductive, maternal, and child 

health; family planning; nutrition; communicable and non-communicable diseases; gender 

equity; and gender-based violence (GBV) targeting women. Additionally, and importantly for this 

study’s aims, the 2016 NDHS provides:   

  

1. Recent, geo-located, nationally representative household and individual survey data  

2. Sex disaggregated data for key indicators 

3. Data suitable for gender statistics (beyond sex-disaggregation) 

 

DHS data are available for download upon submission and approval of a registered use-case. 

The most recent round of the DHS survey in Nepal was conducted in 2016. The survey was 

implemented face-to-face, using CAPI (computer aided personal interviewing), by the Nepali 

survey organisation New Era, with support from the Nepali Ministry of Health (MOH et al., 2017). 

  

The 2016 NDHS employed a stratified, clustered design, with the preliminary sampling frame 

drawn from the 2011 Nepal Population and Housing Census. The 2016 NDHS was designed to 

be representative of the Nepali population at three sub-national levels, namely: ecological zone 

(Terai, Hilly, Himal), development region (N = 5), and province (N = 7). Design weights are 

available to account for the complex sample design for national and province level findings.  Full 

details of the NDHS sample design are available in the survey documentation (MOH et al., 2017). 

For brevity, we limit discussion of the sample design to its pertinence for the present study. 

Briefly, the population was divided according to rural/urban residency within each of seven 

provinces, to create 14 strata. A total of 383 primary sampling units (PSUs) were selected within 

strata, with probability proportional to size (PPS). In rural areas, a two-stage design was 

adopted, with wards forming the PSUs. In urban areas, where wards are excessively large, a 

three-stage design was adopted, with enumeration areas (EAs), sampled within selected wards, 

forming the PSUs. Wards (rural) and EAs (urban) with 200 households or more, were further 

subdivided such that the PSU corresponds to a portion of the ward / EA rather than its entirety. 

  

Following a manual listing phase, 30 households were selected within each PSU, resulting in a 

total sample of 11,490. Within each selected household, female household members and 

overnight guests aged 15 – 49 were eligible to complete the individual questionnaire. Within a 

50% subset of selected households, male household members and overnight guests were 

eligible to complete the individual questionnaire. Response rates were high for both the 
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household (n = 11,040, 96% response rate) and individual questionnaires (12,862 women, 98% 

response rate, and 4,063 men, 96% response rate).  

  

The 383 clusters selected as primary sampling units (PSUs) provide the data points used in the 

high-resolution geospatial analysis, presented below. PSUs (wards, EAs, or a segment thereof) 

were geolocated (i.e. assigned longitude and latitude coordinates). The GPS location data 

correspond to the cluster centroid. Household and individual observations are nested within 

clusters via unique cluster ids. In order to preserve respondents’ anonymity, the DHS 

programme displaces cluster locations by as much as 5km for rural cluster and 2km for urban 

clusters. 1% of (undisclosed) rural locations are displaced by up to 10km, to prevent 

reidentification (Burgert et al., 2013; ICF, 2012. Cluster displacement is controlled for in the 

geospatial modelling, following published recommendations (Perez-Heydrich et al., 2013). 

   

The study team undertook a review of the academic and grey literature and held a series of 

meetings with senior officials at the Nepal Central Bureau of Statistics (CBS) in order to refine 

the selection of indicators. Seven indicators were initially considered for inclusion in the study, 

based on their availability in the DHS data and their relevance for gender equitable development 

policy in Nepal:  

  

1. Literacy (sex disaggregated) 

2. Educational attainment (sex disaggregated) 

3. Market labour participation (sex disaggregated) 

4. Agriculture-based occupation (sex disaggregated) 

5. Stunting in childhood (sex disaggregated) 

6. Attitudes to gender-based violence (GBV) against women (sex disaggregated) 

7. Births in health facilities 

  

The initial group of indicators was generated in accordance with standard international 

definitions (Detailed definitions are provided in appendix A, table A3.1). 

 

Figures  3.1 - 3.7 below, demonstrate the variation in the seven indicators by province and sex. 

The Province level estimates take account of the complex survey design and incorporate design 

weights. 

Figure 3.1. Maps of female literacy (left) and male literacy (right) by decile at province level. Both the maps derived 

from DHS survey data.  
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Figure 3.2. Maps of female educational attainment (left) and male educational attainment (right) by decile at province 

level. Both the maps derived from DHS survey data.  

Figure 3.3. Maps of female market labour participation (left) and male market labour participation by decile (right) 
at province level. Both the maps derived from the DHS survey data. 

 

Figure 3.4. Maps of female engagement in agriculture (left) and male engagement in agriculture (right) by decile at 
province level. Source: Authors analysis of weighted NDHS 2016 survey data. 
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Figure 3.5. Maps of female stunting in childhood (left) and male stunting in childhood (right) by decile  at province 
level. Source: Authors analysis of weighted NDHS 2016 survey data. 

Figure 3.6. Maps of female complacency about GBV against women (left) and male complacency about GBV against 
women (right) by decile at province level. Authors analysis of weighted NDHS 2016 survey data. 

 

 

Figure 3.7. Map of health facility births by decile at province level. Authors analysis of weighted NDHS 2016 survey 

data. 

 

Figures 3.1-3.7 show province level variations in the selected indicators for men and women. 

Province level variation is pronounced for some indicators. Where differences between 
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provinces are less marked (for example, women’s and men’s attitudes to GBV against women), 

they remain statistically significant (p <0.05, Kruskal Wallis tests). 

  

Standard inferential statistics can direct attention – and resources – to sub-national variations 

and inequalities at the province level. However, while design effects originating in the clustered 

sample design can be measured and controlled for, and within and between cluster variance 

decomposed, within cluster samples are not designed to support inferential analysis at lower 

geographical scales.  

  

In contrast, spatial interpolation methods offer a means to exploit the available geolocated data 

at cluster level in order to refine the geographical scale of estimates. Three of the seven 

shortlisted indicators were selected for high resolution mapping. They are: Literacy, agriculture-

based-occupation, and health facility births. Individual responses were aggregated to generate 

counts and proportions corresponding to each indicator for the 383 geolocated clusters (PSUs). 

Cluster level estimates are unweighted (design weights are not applicable at the cluster level). 

  

 

4. Geospatial Covariate Layers  
 

4.1. GIS Covariate Layers 
 

A range of geospatial datasets were collated from open-source platforms and processed to 

support the high-resolution mapping of the selected development indicators. Datasets included 

physical (topography, climate, land-cover), social (population counts, ethnicity), and built-

environment (urbanisation, human settlements) elements.  A table listing the datasets and 

further details on those selected are outlined in Appendix A.  Selection was driven by past 

research on correlation between geospatial data and the selected development indicators 

(Bosco et al., 2017).  

 

The geospatial data were transformed (when required) into continuous raster format, with 

matching extents of Nepal, and consistent spatial resolution and coordinate systems. Due to 

the varying resolutions and extents of the source data, raster data underwent re-projecting and 

resampling using Geographic Information Systems (GIS) software ArcGIS. Re-sampling 

interpolation techniques varied depending on the original resolution and category of the 

datasets. This pre-processing was carried out to produce the final layers, each with a spatial 

resolution of 0.0083 decimal degrees (approximately 1km at the Equator), in geographic 

coordinate system WGS84. Original datasets were downloaded in either raster or vector format, 

where vector datasets (e.g. protected areas, ethnicity) were transformed into discrete rasters 

with the variable of interest being allocated a value of one. Categorical raster datasets were 

reclassified to contain one class of interest; a continuous dataset was produced from these by 

smoothing or calculating the distance from the feature of interest. For Openstreetmap data 

such as roads, schools, rivers and other location data (such a health facilities), distance was 

calculated from the locations to produce the continuous surface.  More information on each 

dataset and the methods used to produce the covariates can be found in Appendix A. Figure 

4.1, below, provides examples of the geospatial covariates included in the later analysis. 
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Figure 4.1. Geospatial covariates at 0.0083 decimal degrees resolution (approx. 1km at the Equator) showing 
(clockwise from top left) population count, distance to protected areas, distance to schools and nighttime lights. 

 

4.2 Remote Sensing Covariate Layers 
 

In addition to the GIS covariates detailed above, we created a set of seven covariates from 

remotely-sensed (RS) satellite datasets, downloaded from the United States Geological Survey 

(USGS). The datasets included three Moderate Resolution Imaging Spectrometer (MODIS) 

products:  

 

1. The MOD13Q1 vegetation indices product, where two vegetation indices were extracted 

to provide a measure of live vegetation, namely, the Normalised Difference Vegetation 

Index (NDVI) and the Enhanced Vegetation Index (EVI), which has higher sensitivity in 

dense areas. The MIR (middle infrared surface reflectance) band was also extracted. 

2. The MOD17A2H for the Gross Primary Productivity (GPP) and MOD17A3H for Net 

Primary Productivity (NPP), both measures of vegetation productivity.  

3. The MOD16A2 for the total evapotranspiration (ET) and the total potential 

evapotranspiration (PET).  

 

Further details on all the products and datasets can be found in Appendix A. 

 

An R-script was created to download all of the data for each product between the years 

December 2009 -  January 2017 (the NPP was available from December 2009- January 2014). 

Data was delivered as HDF-EOS format files, with separate tiles for the selected study area. 

Using R, these tiles were first transformed from HDF format to .tif files. The products were then 
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split into the seven indices selected for use along with each of their respective quality assurance 

layers. The information in the quality assurance (QA) layer and valid range values were used to 

remove contaminated pixels originating in sensor effects such as different orbits, adjacency, 

band quality, and MODLAND QA, and non-sensor effects such as cloud state and atmospheric 

noise (atmospherically corrected and clear cloud state). For each of the indices, summary 

statistics including the maximum, minimum, mean, median, sum (cumulative value) and sum 

per year (cumulative value per year) were computed for the specified period on the .tif tiles.  

 

The tiles for each index and statistic were mosaicked together in ArcGIS to produce seamless 

coverage of Nepal. As the original datasets were in 250m or 500m resolution in a Sinusoidal 

coordinate system, they were reprojected to match the geospatial coordinates at a resolution 

of 0.00083 decimal degrees (approx. 100m at the equator) in GCS WGS 84. Nearest neighbour 

interpolation was applied during reprojecting and resampling. To produce a final layer, the data 

was clipped to match the extent of the other covariates. Rasters with large areas of no data 

values due to contamination were replaced with a value of 0. Figure 4.2, below, shows example 

RS covariates.  

 

Figure 4.2. Remote sensing covariates showing the mean Gross Primary Productivity and mean Normalised 

Difference Vegetation Index.  

 

4.3 CDR Covariate Layers 
 

The CDR features described above, and presented in table A2.1, were produced as covariate 

layers for inclusion in the geospatial analysis. The CDR layers were produced to match the 

extent and spatial resolution (0.0083 decimal degrees) of the GIS and remote sensing (RS) 

layers. Using the latitude and longitude of each cell tower, a point dataset was created in ArcGIS 

to map the tower locations. These points were used as the input to create a set of voronoi 

polygons where the polygon size is determined based on the equidistance from each point 

location. The voronoi polygons provide an estimation of cell tower coverage, with each polygon 

representing coverage for the cell tower point within it. Due to the addition or removal of cell 

towers over time, a new set of voronoi polygons was calculated for each month of CDR data. 

Additionally, a second version of voronoi polygons was created with a buffer of 35km applied 

around each cell tower location, to provide an estimation for maximum coverage. This resulted 

in areas in the north of the country being omitted, as cell tower coverage is lower in areas that 
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have low population counts. To create continuous coverage, the buffers were dissolved and 

manually smoothed. An obfuscated version of both sets of voronoi polygons are presented in 

Figure 4.3 for January 2016. 

 

Figure 4.3. Voronoi polygons for Nepal (left) with voronoi polygons clipped at a 35 km radius (right) with inset of 
Kathmandu. Note that for commercial sensitivity purposes, the polygons displayed here are generated from cell 
tower locations that have been obfuscated with random noise assigned using a buffer of 10km around cell tower 
locations 

 

To map the CDR feature values, data for each month of the study reference period was joined 

to the voronoi polygons for each cell tower location. An ArcPy script was applied to convert the 

polygon layers to raster for each individual feature, with the same extent and in the same 

coordinate system (GCS WGS 1984) as the geospatial layers. The spatial resolution was 

selected as 0.00083 decimal degrees (approximately 100m at the equator), to preserve smaller 

voronoi polygons located in highly concentrated urban areas that would otherwise be covered 

by a 1km cell size. These layers were produced for each feature for every month of 2016, 

mapped to the voronoi polygons. Figure 4.4 shows an obfuscated example for the median of 

the incoming call counts mapped at 100m resolution for January 2016.  

Figure 4.4. An obfuscated example displaying median incoming call counts for January 2016 at 0.00083 decimal 
degrees (approx. 100m at the equator) mapped to the voronoi polygons derived from cell tower location. Note that 
for commercial sensitivity purposes, the polygons displayed here are generated from cell tower locations that have 
been obfuscated with random noise assigned using a buffer of 10km around cell tower locations. In addition, median 
incoming call counts have been obfuscated using a random noise weighting 

 



 

37 | 85 

The final set of CDR layers needed to be at a spatial resolution of 0.0083 decimal degrees 

(approximately 1km at the Equator) to match the geospatial covariates, the 100m raster layers 

were aggregated to this cell size. The average of the selected CDR feature had to be calculated 

to account for multiple smaller voronoi polygons than would be included in a 1km grid cell, and 

those areas where a 1km grid cell would overlap with the boundary of neighbouring polygons.  

The values were aggregated by weighting the features by the number of subscribers at each 

tower location.  

 

The number of subscribers per 100m grid cell was calculated and the result multiplied with each 

CDR feature 100m raster. Within every 0.0083 decimal degrees (approx. 1km) grid cell, the sum 

of this output was calculated, along with the sum of the number of subscribers. These were 

then divided to produce a CDR feature value for each pixel, which is based on the number of 

subscribers within the different voronoi polygons. This was calculated for all of the layers for 

each month, to produce a 0.0083 decimal degrees (approx. 1km) resolution set of layers for the 

twelve months (See the obfuscated example in figure 4.5). An annual average was calculated 

whilst taking into account the number of days in each month, giving a final set of CDR covariate 

layers for each feature, for the year of 2016.  

 

Figure 4.5. Obfuscated median incoming call counts for January 2016 aggregated to 0.0083 decimal degrees 
(approx. 1km at the equator). Note that for commercial sensitivity purposes, the raster layer displayed in this figure 
is based on cell tower locations that have been obfuscated with random noise assigned using a buffer of 10km 
around cell tower locations. In addition, median incoming call counts have been obfuscated using a random noise 
weighting 

 

 

 

5. The Applied Methodology  
 

5.1. the modelling architecture 
 

Machine learning (ML) techniques and Bayesian Geostatistical (BGS) models were applied to 

build high resolution, sex-disaggregated maps for the selected development indicators (work 

package one) and to predict user gender for the CDR dataset (work package two) 
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A modelling architecture based on Artificial Neural Networks (ANNs) was used to split the Ncell 

database into users predicted to be women and those predicted to be men, and to provide the 

necessary data to create sex-disaggregated mobility and migration maps. This work also aims 

to improve on previously applied disaggregation efforts12, by investigating the impact of 

uncertainties introduced by SIM sharing on gender prediction models. 

 

ANNs were also applied, this time in combination with BGS methods, to construct sex-

disaggregated high spatial resolution maps of the selected development indicators (literacy, 

engagement in agriculture and births at health facilities in Nepal).  Both methods utilised the 

geolocated surveys and gridded spatial covariate layers. The applied methodology allowed us 

to also estimate associated metrics of model uncertainty, highlighting the areas where 

predictions can be treated with greater confidence, versus areas where there is higher 

uncertainty due to conflicting data from surveys or poor explanatory power from the available 

covariate layers.  

 

Each of the applied modelling architectures integrated Semantic Array Programming (SemAP) 

(de Rigo, 2015, 2012a, 2012b) and geospatial tools (ArcGis (ESRI, 2015) and QGIS (QGIS, 2018)) 

through the Geospatial Semantic Array Programming (GeoSemAP) paradigm (de Rigo et al., 

2013, de Rigo, 2015).  

 

Semantic array programming was developed to ease the integration of various conceptual 

modelling-units by formulating them as data-transformation modules or models (D-TMs). D-TM 

units do not force a user to master their internal details, since they exclusively exchange data, 

with broadly supported formats. SemAP is designed to ease the computational communication 

between local-contexts, different expertise, and disciplines in a simple way, while remaining 

compact and unambiguous. This is achieved by limiting the potential generality of the 

exchanged data by means of array-based semantic constraints (de Rigo, 2015; Bosco and 

Sander, 2015).  

 

GeoSemAP exploits Semantic Array Programming and geospatial tools to split a complex D-

TM into logical blocks. By applying mathematical and geospatial constraints, the reliability of 

these logical blocks can be more easily assessed. Constraints take the form of precondition, 

invariant and postcondition semantic checks and enable complex wide-scale transdisciplinary 

models to be described in terms of simpler GeoSemAP blocks (de Rigo, 2015).  

 

In order to support the replication of methods and results, only free software tools and libraries 

(Stallman, 2009), and freely available datasets, were utilised in the geostatistical modelling 

techniques presented here. Similarly, the techniques used to apply all models and submodels 

within the modelling architecture developed for the study, are designed to be fully reproducible. 

 

 

 

                                                        
12(e.g. Jahani et al., 2017, Frias-Martinez, et al., 2010) 



 

39 | 85 

5.2. Artificial Neural networks 
 

Artificial Neural Networks are based on an architecture inspired by the human brain. An ANN 

consists of a system of interconnected nodes. Information propagates through the nodes, 

transforming the inputs in intermediate derived signals to generate the final outputs, with the 

number and type of nodes that can be modified to perform the analyses. 

Internal nodes define the neural network hidden layers and are called neurons. Each of these 

nodes is a processing element that propagates weighted inputs received from other nodes 

(Pradhan and Lee, 2009). 

 

The learning process that happens once the network is built, consists of iteratively adjusting 

weighted connections between neurons by comparing the modelling output with the calibration 

data. The output of a neural network, after a successful training, is a model that predicts a target 

value from input data (Lee, 2007). 

 

Artificial Neural Networks can take advantage of complex relationships between covariates and 

output data because the relationship between nodes need not be linear, or even continuous. At 

the same time, data affected by large noise/signal ratios (or poor correlation with the desired 

target) may still be exploited by neural networks in their simplified near-linear relationships. 

Although ANNs can easily discover the principal components (e.g. linear) of covariation even 

with factors having a limited prediction capacity, the nonlinear components of relationship can 

also be exploited, when the unavoidable covariate-output noise allows these components to be 

numerically detected. 

  

Multilayer feed-forward networks (multilayer perceptrons) form the basis of many ANN 

applications (Bosco et al., 2013, de Rigo et al., 2001, Secomandi, 2000), due to their universal 

approximation properties. Theoretically, a properly designed and trained perceptron is able to 

reproduce any relationship between the quantity to be modelled and the covariates (Kreinovich, 

1991; Hornik et al., 1989). 

 

In a feed-forward neural network, connections between the different units do not form a cycle 

or loop with information moving in only one direction (from input to output nodes and passing 

through the hidden layers (if any)). The simplicity of the theory, the ease of programming and 

the consistently good results are the main reason for using this type of Neural Network. 

  

In this study we applied a feed-forward neural network to create the high resolution maps and 

to predict user’s gender from the CDR dataset. We implemented a feed-forward multilayer 

perceptron by exploiting the Neural Network Package (Schmid, 2009) In MATLAB language, 

using GNU Octave (Eaton, 2008). 

  

5.3. Bayesian Geostatistical Models 
 

The Bayesian modelling approach encompasses a suite of statistical techniques which utilise 

the Bayesian method (Zaslavsky, 2002) to estimate the parameters of a posterior distribution. 

It is well-suited to modelling large datasets containing spatial information, owing to its flexibility, 
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and its ability to accommodate correlation and hierarchical structure in the data, and to take 

account of uncertainty.  

 

In the present study, we applied Bayesian geostatistical approaches to generate posterior 

estimates, exploiting the spatial and temporal covariance present in the data, and in the 

relationships with covariates (Banerjee et al., 2000). We used the Integrated Nested Laplace 

Approximations (INLA) approach, available in the GNU R (R development core team 2014) 

package named R-INLA (Rue et al., 2009). INLA is a computationally-efficient approximation to 

a classic Markov-Chain Monte-Carlo approach. It differs from statistical inference for latent 

Gaussian Markov random field models, as described in Rue et al. (2009). The INLA approach 

approximates the Posterior marginals of the latent Gaussian field. Latent Gaussian models are 

a broad, flexible class of models that include (generalized) linear, mixed, spatial and spatio‐

temporal models. Combined with the Stochastic Partial Differential Equation approach (SPDE) 

(Lindgren et al., 2011), it can accomodate all kinds of geographically referenced data.  

 

Bayesian geostatistical models are particularly suitable for the production of high resolution 

maps of development and health indicators (Bosco et al., 2018).  

 

 

5.4.  Mapping sex-disaggregated development indicators at high 
spatial resolution using survey data, tower level CDR data and 
environmental/socio-demographic covariates 
 

Multiple approaches are available to create high-resolution surfaces using a combination of 

geolocated household surveys and geospatial covariate data. We tested and compared a 

variety of Bayesian geostatistical models and machine learning techniques (Artificial Neural 

networks, Random Forest (RF), Gradient Boosting Trees (GBT)).  

 

Following an initial test phase to assess model performance on a subset of the selected sex-

disaggregated indicators, Bayesian geostatistical models and Artificial Neural Networks were 

retained as the more promising methods. 

 

For each of the selected sex-disaggregated indicators we produced two different high-

resolution maps (each with associated uncertainty). The first set of maps utilise covariates 

derived from remote sensing data (e.g. NDVI, EVI, etc.) and GIS data (e.g. roads, rivers, 

urban/rural, etc.). The second set incorporate the CDR-derived covariates, aggregated at tower 

level, alongside the RS/GIS covariates. This permits us to assess the presence of additional 

informative power contributed by CDR data relative to RS/GIS data alone. 

 

5.4.1 Selection of the indicators to be modelled 
 

In order to maximise scope for the analysis to support development policy priorities and 

resource allocation indicator selection was informed by senior personnel at the Central Bureau 

of Statistics (CBS) in Nepal. As detailed above (section 3), short-listed indicators included: 
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educational attainment (secondary schooling), literacy, market labour participation, farm-based 

livelihoods, attitudes to GBV against women, births in health facilities and childhood stunting. 

 

Selection of the final set of indicators was guided by preliminary statistical analysis to detect 

the presence of (linear and nonlinear) correlation between the phenomenon under investigation 

and the available set of covariates.  

 

Here, the availability of a sufficiently correlated set of explanatory covariates was the deciding 

factor. The model architecture, while sophisticated, cannot compensate for an absence of 

information. Two indicators, stunting in children and attitudes to GBV against women were 

omitted from further analysis due to lack of correlation between the geolocated survey data and 

the geospatial covariates. However, when correlation exists our models were always capable 

to exploit this signal for obtaining good modelling performance. 

 

We tested for linear and nonlinear associations in the data. In addition to the Pearson correlation 

coefficient (for linear associations), we exploited a new measure of dependence (termed 

distance correlation) developed by Szekely, Rizzo, and Bakirov in 2007. Distance correlation 

provides a measure of association between two variables or vectors, but accommodates linear, 

nonlinear and nonmonotone dependence structures (Szekely et al., 2007).  

 

Following this analysis, literacy, agriculture-based occupation, market-labour participation, and 

health facility births were retained for subsequent modelling. 

 

5.4.2. Selection of geospatial covariate layers 
 

To maximise the predictive accuracy of a model it is fundamental to select the optimal set of 

covariates. The inclusion of too many covariates can result in overfitting while the inclusion of 

too few informative covariates can cause a loss of explanatory power. A number of common 

and widely accepted (Murtaugh 2009) techniques are available to support statistically robust 

selection of the best performing covariates for inclusion within a modelling architecture. 

 

We conducted a sensitivity analysis, using a jackknife approach, to select an appropriate set of 

GIS and RS covariates for each of the retained indicators. The jackknife technique (Tukey, 1958) 

consists of dropping one observation at a time from a set of data and recalculating the estimate 

anew each time. The full set of covariates is assessed at each stage of the selection process, 

with an iterative removal of the covariate contributing least to the model performance.  

Jackknife techniques can prevent model overfitting, while maximising possible explanatory 

power. The technique also minimises the risk of missing nonlinear patterns of correlation 

among multiple covariates.  

 

Multicollinearity is another important consideration, with scope to impact on the stability and 

quality of the modelling results. We computed Variance Inflation Factors (VIF) for each 

explanatory variable (the VIF value increases in tandem with multicollinearity). Only those 

variables with a VIF equal to or less than three were retained (See Bosco et al. (2017) for a fuller 

discussion of VIF bounds for inclusion). 
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Starting with the highest-correlated pairwise variables, and applying the jackknife approach, we 

omitted the covariate that did not appear in the set associated with the lowest mean squared 

error (MSE). Once multicollinearity was under control, we continued applying the jackknife 

analysis in order to select the final set of explanatory variables, maximising the model prediction 

capacity. All of the explanatory variables were also normalized to have a mean of zero and unit 

variance. This was done to limit the effects of outliers and different units of measure among 

the covariates.  

 

Given the large number of covariates assembled from the RS/GIS and CDR data and the 

relatively small number of clusters (N = 383) within the DHS database, we applied unsupervised 

methods based on distance correlation to control for overfitting and strongly reduce the risk of 

chance correlation. This method was applied to select a subset of covariates with lower 

correlation with each other. While this approach represents a suboptimal selection process for 

the more informative covariates, it was adopted to maximise the probability of retaining a set 

of explanatory variables with good correlation, without feeding the model information on the 

dependent variable.  

 

The unsupervised method was designed to select a group of up to 20 covariates, mostly 

uncorrelated with each other. To do that, we applied the dist_corr function of the Mastrave 

modelling library (de Rigo, 2012c) within the GNU Octave computing environment. We picked 

the pair of covariates with the highest distance correlation between them, eliminating one of 

those covariates at random. We proceeded iteratively until we reached the desired number of 

covariates. The application of this procedure ensures the retention of a set of covariates 

exhibiting maximum dissimilarity. 

 

This unsupervised method for covariate selection has similarities with principal component 

analysis (PCA). PCA reprojects a set of possibly correlated covariates into a set of ‘principal 

components’ that are linearly uncorrelated and represent a linear combination of the covariates. 

With the method proposed here, the covariates are uncorrelated with each other, similarly to the 

vectors of PCA, but retain their original shape. 

 

5.4.3. further details on the modelling architecture for high resolution 
mapping 
 

As previously detailed, we applied machine learning techniques (ANN) and Bayesian 

geostatistical models to produce sex-disaggregated maps of literacy, agriculture-based 

occupation, and health facility births at high spatial resolution, across Nepal. 

 

Both the ANN models and those implemented in INLA used cross‐validation (repeated random 

sub‐sampling), applied to 70% of the available DHS data, to tune the model parameters. For the 

neural network, parameters include: the number of neurons in each layer, the performance 

function, and the activation function of the hidden and output layers (Sigmoid, linear, etc.). As a 

training algorithm we used the Levenberg-Marquardt method. For the Bayesian method 

implemented in INLA, parameters include: likelihood models, prior distribution of the 

hyperparameters and building of the mesh. 



 

43 | 85 

In order to further increase model performance, a simplified version of the Selective 

Improvement by Evolutionary Variance Extinction (SIEVE) (de Rigo et al., 2005) was applied to 

the ANN. This simplified SIEVE was utilised for both the high resolution mapping and CDR-

based gender prediction models. 

  

The core of the SIEVE architecture is to iteratively select the best parameter vectors, so reducing 

exponentially the number of parameter vectors surviving each iteration. This reduction of 

parameter vectors is typically compensated for through the extension of the computational 

resources dedicated to training each parameter vector until the optimum vector passes the final 

SIEVE. The complete (non simplified) SIEVE architecture includes a “generative” phase 

(bypassed in the simplified SIEVE) within each step, where a cloud of new vectors are generated 

close to each surviving parameter vector from the previous sieves. We initially applied the 

simplified SIEVE to reduce the required computational time. The simplified version proved 

sufficiently robust to improve model performance. 

 

After an initial testing phase, during which we compared many different model architectures, 

we decided to apply INLA as the default. INLA models are considerably less time demanding 

than ANNs, yet have similar predictive capacity (Bosco et al., 2017). For this reason, the majority 

of the maps we produced in this study are based on the INLA family of models. Artificial neural 

networks were, however, applied in instances where INLA resulted in poor results in prediction 

and in particular, when unusual data distributions required accommodation. 

 

5.4.4. Model validation 
 

In order to achieve the best possible accuracy for each of the modelled indicators, while 

retaining model’s flexibility in predicting over untested areas, the predictive capacities of 

different models were compared, exploiting a two-step validation approach. 

 

By exploiting a repeated random sub-sampling cross-validation on the set of data selected for 

model training, we selected the best model for each of the tested model architectures. We 

quantified the accuracy of the model (the relationship between predicted and observed values) 

by calculating the root mean square error (RMSE) and the mean absolute error (MAE). Although 

some authors suggest that inter-comparisons of average model‐performance should be based 

exclusively on MAE (Willmott and Matsuura, 2005), we chose to additionally calculate the RMSE 

given its sensitivity to occasionally large predictive error (Chai and Draxler, 2014). We used the 

remaining 30% of the data to validate the model. MAE, RMSE and the explained variance of the 

model (expressed in proportional terms) were calculated to measure model performance. 

 

To produce the final map (at a resolution of 1x1 km2) for each of the modelled indicators, the 

model with the highest explained variance and lowest RMSE and MAE was selected. Explained 

variance was calculated using the approach detailed in by Bosco et al. (2017). 

 

In addition to the calculation of the RMSE and MAE for each of the models, we introduced 

another parameter to calculate the general bias of a model: 
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where pred is the mean of the predicted values, 𝜎obs and obs are the standard deviation and 

mean of observed data. 

 

The measure of general bias was introduced to discriminate between systematic over or under-

estimates of a model and models having an overall bias mitigated by the compensating local 

under/over-estimations. This is because MAE and RMSE cannot directly preserve information 

on the sign of the modelling errors. 

 

5.4.5. Results 
 

The results from this study show that spatially detailed sex-disaggregated estimates of a variety 

of development indicators can be produced from survey cluster data and mapped at high 

spatial resolution. In tables 5.1, 5.3 and 5.5 we present the performance of the applied model 

architectures for each of the investigated indicators with and without the inclusion of CDR 

covariates. 

 

For each of the modelled indicators we show maps of the survey clusters and the indicator 

value in each of the clusters, maps of the predicted proportion of the modelled indicators, the 

level of uncertainty associated with these maps and a graph comparing DHS vs predicted 

values at province level. We also present the results of the covariate selection exercise, detailing 

which covariates were selected as the optimum performing set for the given indicator. 

 

We organized the presentation of results by indicator, and disaggregated by sex, in the following 

order: proportion of females and males that are literate, proportion of females and males 

engaged in agriculture, and proportion of births in health facilities.  

 

Literacy 
 
Table 5.1 - Comparison of Bayesian model results for male and female literacy with and without the inclusion of CDR 

data in the modelling architecture. RMSE, MAE, explained variance, MSE and MSE of a trivial model were calculated. 

 

Modelled 
Indicator 

Modelling technique MSE RMSE MAE Exp.Var. MSE  
(trivial) 

Female literacy INLA (GIS/RS) 0.016 0.13 0.1 0.65 0.047 

Female literacy INLA (with CDR data) 0.018 0.134 0.1 0.62 0.047 

Male literacy INLA (GIS/RS) 0.02 0.14 0.1 0.32 0.029 

Male literacy INLA (with CDR data) 0.02 0.14 0.1 0.32 0.029 
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Table 5.2 Summary output of the covariate selection procedure for male and female literacy with and without 

exploiting CDR data in the modelling architecture. Exp. Var. is the proportion of variance explained by each of the 

models. 

 

Female literacy GIS/RS data GIS/RS and CDR data 

N. of covariates 10 9 

Exp. Var. 0.65 0.62 

Selected 

Covariates 

Enhanced Vegetation Index 

Net Primary Productivity 

Distance to rivers 

Distance to roads 

Potential evapotranspiration 

Distance to School 

Nightlights (threshold of 0.5) 

Ethnicity caste hill 

Ethnicity madhesi 

Distance from areas with nightlight 

values over 0.5 

Incoming call duration (median) 

Total call counts (median) 

Mid Infrared Index (max) 

Distance to rivers 

Distance to roads 

Distance to schools 

Protected areas 

Ethnicity madhesi 

Ethnicity muslims 

  

 

Male literacy GIS/RS data GIS/RS and CDR data 

N. of covariates 7 8 

Exp. Var. 0.32 0.32 

Selected 

Covariates 

Distance to urban areas 

Landcover 

Distance to roads 

Precipitations 

Ethnicity madhesi 

Ethnicity muslims 

Distance from areas with nightlight 

values over 0.5 

Handset weight (median) 

Distance to rivers 

Distance to roads 

Precipitations 

Ethnicity madhesi 

Ethnicity muslims 

Potential evapotranspiration 

Nightlights 

 

  
Figure 5.1. Map of the cluster-point DHS survey data for female and male literacy in Nepal.  
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Figure 5.2. Maps of the proportion of female literacy from GIS, RS and CDR data. The maps show the median (top) 

and interdecile (middle row) values at 1km2 resolution and the values of female literacy weighted by population 

aggregated at municipality and rural municipality level (bottom). 
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Figure 5.3. Maps of the proportion of female literacy created by exploiting only GIS and RS data. The maps show the 

median (top) and interdecile (middle row) values at 1km2 resolution and the values of female literacy weighted by 

population aggregated at municipality and rural municipality level (bottom). 
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Figure 5.4. Predicted values of female literacy (aggregated at province level), derived from GIS/RS covariates (blue), 
GIS/RS covariates and CDR information (orange), and DHS survey data (grey). 

 

Agriculture based occupation 
 
Table 5.3 - Comparison of modelling results for male and female engagement in agriculture with and without the 

inclusion of CDR data in the modelling architecture. RMSE, MSE, MAE, explained variance and MSE of a trivial model. 

 

Modelled 
Indicator 

Modelling technique MSE RMSE MAE Exp.Var. MSE  
(trivial) 

Female Agri INLA (GIS/RS) 0.052 0.22 0.16 0.55 0.11 

Female Agri INLA  (with CDR data) 0.054 0.23 0.17 0.53 0.11 

Male Agri INLA (GIS/RS) 0.055 0.23 0.19 0.36 0.087 

Male Agri ANN (GIS/RS) 0.056 0.23 0.19 0.36 0.087 

Male Agri INLA  (with CDR data) 0.054 0.23 0.19 0.37 0.087 

 

Table 5.4 Summary output of the covariate selection procedure for male and female engaged in agriculture with or 

without exploiting CDR data in the modelling architecture. Exp. Var. is the proportion of variance explained by each 

of the models. 

 

Female empAgri GIS/RS data GIS/RS and CDR data 

N. of covariates 4 6 

Exp. Var. 0.55 0.53 
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Selected 

Covariates 

Global Urban Footprint 

Distance to schools 

Nightlights (threshold of 0.5) 

Distance from areas with nightlight 

values over 0.5 

Handset weight (median) 

Outgoing call duration (median) 

Distance to schools 

Nightlights (threshold of 1) 

Distance from areas with nightlight 

values over 1 

Distance from areas with GHS values 

over 0.2 

 

Male empAgri GIS/RS data GIS/RS and CDR data 

N. of covariates 7 10 

Exp. Var. 0.36 0.37 

Selected 

Covariates 

Friction_surface                

Food security and related distance                

Mid Infrared Index                       

Precipitation                    

Distance to schools                  

Nightlights (threshold of 0.5)             

 

 

Handset weight (median) 

Incoming call duration (median) 

Precipitation 

Distance to roads 

Distance to schools 

Nightlights (threshold of 1) 

Distance from areas with nightlight 

values over 1 

Distance from areas with GHS values 

over 0.2 and 0 

Ethnicity madhesi 

 

  

Figure 5.5. Map of the cluster-point DHS survey data for female and male engagement in agriculture in Nepal. 
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Figure 5.6. Maps of the proportion of female engagement in agriculture from GIS, RS and CDR data. The maps show 
the median (top) and interdecile (middle row) values at 1km2 resolution and the values of female employment in 
agriculture weighted by population aggregated at municipality and rural municipality level (bottom). 
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Figure 5.7. Maps of the proportion of female engagement in agriculture created by exploiting only GIS and RS data. 
The maps show the median (top) and interdecile (middle row) values at 1km2 resolution and the values of female 
engagement in agriculture weighted by population aggregated at municipality and rural municipality level (bottom). 
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Figure 5.8. Predicted values of female engagement in agriculture (aggregated at province level), derived from 
GIS/RS covariates (blue), GIS/RS covariates and CDR information (orange), and DHS survey data (grey). 

 

Births at Health Facilities 
 

Table 5.5 - Comparison of Bayesian model and ANN results for the proportion of births at health facilities with and 

without the inclusion of CDR data in the modelling architecture. RMSE, MAE, explained variance and MSE of a trivial 

model were calculated. 

 

Modelled 
Indicator 

Modelling technique MSE RMSE MAE Exp.Var. MSE  
(trivial) 

Health fac. births INLA (GIS/RS) 0.044 0.2 0.17 0.53 0.094 

Health fac. births ANN (GIS/RS) 0.043 0.2 - 0.54 0.094 

Health fac. births INLA (with CDR data) 0.048 0.22 0.17 0.49 0.094 

 

Table 5.6 Summary output of the covariate selection procedure for modelling births at health facility with and without 

exploiting CDR data in the modelling architecture. Exp. Var. is the proportion of variance explained by each of the 

models. 

 

Health fac. Births GIS/RS data GIS/RS and CDR data 

N. of covariates 6 8 

Exp. Var. 0.53 0.49 

Selected 
Covariates 

Global Urban Footprint 
Distance to schools 
Distance to roads 
Protected areas 
Crop Suitability 

Gross Primary Productivity 

Incoming_call_duration (median) 
Distance to roads 
Protected areas                    

Distance to schools        
Distance to rivers  
Ethnicity madhesi                     
Ethnicity muslims    

Distance from areas with GHS values 
over 0.2 
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Figure 5.9. Map of the cluster-point DHS survey data for health facility births in Nepal. 

 

 

 

Figure 5.10. Maps of the proportion of health facility births from GIS, RS and CDR data. The maps show the 
median (top) and interdecile (middle row) values at 1km2 resolution and the values of health facility births 
weighted by population aggregated at municipality and rural municipality level (bottom). 
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Figure 5.11. Maps of the proportion of health facility births created by exploiting only GIS and RS data. The maps 

show the median (top) and interdecile (middle row) values at 1km2 resolution and the values of health facility births 

weighted by population aggregated at local-level (bottom). The maps were created applying the INLA model, this 

technique was here preferred to ANNs because with a similar prediction ability but a lower modelling uncertainty. 

 
 



 

55 | 85 

 
 

Figure 5.12. Predicted values of health facility births, aggregated at province level, derived from GIS/RS covariates 
(blue), GIS/RS covariates and CDR information (orange), and DHS survey data (grey). 

 

 
5.4.6. Discussion 
 

The focus of the SDGs on “reaching the furthest behind first” creates a need for new approaches 

capable of identifying who and where these people are in order to reach them. Moreover, to 

reach the SDGs and to be able to track progress towards meeting these goals, it is necessary 

to regularly update such information. 

 

Census data can provide information that is sufficiently spatially detailed to generate a detailed 

geographical snapshot for some development indicators. The possibility to observe changes 

and dynamics over time is limited, however, by the decennial (at best) timing of the population 

census.  

 

Here we explored the potential for spatial interpolation methods to generate accurate maps 

depicting variations and inequalities between and among men and women, proxied by spatial 

and sex-disaggregated variations in key development indicators measured by a quinquennial 

household survey. We also explored the possibility to provide frequent updates to the modelled 

layers by exploiting (the daily availability of new) CDR data. 

The obtained results highlight the practical challenges involved in using spatial interpolation 

methods to map survey-derived development indicators at high-resolution. The relatively small 

number of geolocated data points (PSUs / clusters) typically available in nationally 

representative household data, inhibits the full exploitation of the available model architectures.  

 

We modelled three indicators, disaggregated by sex and mapped at high resolution across 

Nepal. We obtained explained variance (in validation) of around 55% to 65% for all selected 

indicators predicted for women. Equivalent results could not, however, be obtained for men. 

BGS and ANNs achieved similar performance.  

 

Some of the covariates evidenced strong correlation with the selected indicators. For example, 

the Pearson correlation of the global urban footprint with female agriculture is around 0.65 and 

around 0.55 for the correlation with the distance from areas with nightlight values over 0.5. The 



 

56 | 85 

same covariates present a lower correlation with male agriculture (0.42 and 0.44 respectively). 

The same pattern is observed for the sex-disaggregated literacy data. 

 

A number of factors underlie the differences in model performance for the data on male and 

female development indicators. The amount -  and spatial scale - of variation displayed for each 

indicator is a major factor, as is the extent to which the indicator is associated with the available 

geospatial covariates. If limited information is present in the covariates, the model fails to 

predict the phenomena well, but good performance is always obtained where good correlation 

exists.  

 

In general, good correlation between literacy and urbanisation has been shown previously 

(Arouri et al., 2014). Correlations have also been shown between urban areas and delivery in 

health facility births (Tey and Lai 2013, Zere et al., 2011), employment in non-farm activities and 

proximity to urban centres (Deichmann et al., 2009). Remotely-sensed satellite data for 

extracting environmental metrics such as land cover types have been linked to female literacy 

(Watmough et al., 2013). 

 

The tables listing the covariates running within the applied models (paragraph 5.4.5), show that 

introducing CDR data to the modelling architecture produced no consistent improvement in the 

model performance for either the male or female data.  

 

Notwithstanding this finding, there is evidence of correlation between the set of covariates 

derived from CDR data and the modelled indicators. For example, the proportion of females in 

agriculture shows a direct correlation with the handset weight (0.62), the proportion of males in 

agriculture and of births in health facilities have a correlation of 0.46 and 0.42 respectively with 

incoming call duration.  

 

Despite this new source of information, the model’s predictive performance did not improve as 

hypothesised. The difficulty encountered in exploiting this additional information may have 

arisen from the (unavoidable) application of an unsupervised method for selecting the 

covariates when CDR data are used. The high number of covariates and the small set of input 

data (the geo-located survey cluster data), forced the selection of a suboptimal set of data on 

the basis of distance correlation values - in order to avoid model overfitting and reduce the 

possibility of chance correlation (section 5.4.2). The risk in applying this methodology is that 

covariates containing a large part of the signal are removed, a priori, from model contention.   

 

Even in the event of good model performance, known sources of error increase uncertainty. The 

DHS survey’s introduction of a random displacement on cluster location in order to protect 

respondents’ anonymity is one such source of uncertainty for the model (Bosco et al., 2017). To 

mitigate this potential source of error we extracted mean values through a defined buffer 

around the survey clusters (Perez-Haydrich et al., 2013). While the extent of the impact of this 

displacement can vary between indicators and different surveys, in general, its effects should 

be modest (Gething et al., 2015).  

 

The maps produced for female literacy, agriculture-based occupation, and health facility births 

have sufficient accuracy to enable re-aggregation to a geographical level (e.g. municipality) 
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relevant for decision makers and for planning and resource-allocation purposes. Given that 

many of the modelled covariates are frequently updated, there is potential for the regular (or 

even continuous) revision and monitoring of these indicators to inform development policy and 

resource allocation throughout the country. 

 

The results also highlight the need for caution - and for further investigation. Future analysis, 

should consider a larger set of geo-located clusters with indicator data, ideally for multiple time 

intervals. 

 

In order to assess the ability of the available techniques to produce accurate maps of 

development indicators at administrative level, we re-aggregated the maps we created at 1km2 

resolution to Province level. We then compared the results with the equivalent province-level 

estimates obtained from the NDHS 2016 (MOH et al, 2017). 

 

The graphs in Figure 5.4, 5.8 and 5.12 show the high accuracy of our models (with and without 

exploiting CDR data) in predicting female literacy, agriculture-based occupations and the 

percentage of births delivered in health facilities. For example, Figure 5.4 reports a maximum 

distance between the proportion of literate women based on DHS survey data - and our results 

- of 0.04. These strong results are similarly observed for health facility births, where the map 

created (also exploiting CDR data) differs from the NDHS 2016 province level estimates by 

between just 0.01 and 0.03 (with the exception of province number 6 where the difference 

between the two maps is over 10%). Similarly, good performance is also observed for the map 

related to feminisation of agriculture, where the map exploiting CDR data has a maximum 

distance of 0.08 with DHS values in each of the seven provinces. 

  

Although the addition of CDR data does not seem to increase predictive performance overall 

(subject to verification, applying fully supervised techniques on a larger set of data), the 

evidence is that this new source of information is capable of improving sub-national model 

performance. For example, in province number two, both for health facility births and 

feminisation of agriculture, the addition of information derived from CDR data substantially 

increased the models predictive power. 

 

While the study results suggest spatial interpolation methods offer a way to provide regular 

updates on development indicators, further investigation of the minimum and maximum time 

windows for the remote sensing and CDR data, and for other time-variant covariates, remains 

necessary for future modelling. Further effort is required to obtain additional datasets covering 

a range of time intervals to confirm this hypothesis.  

 

5.5. Sex-disaggregate CDR data by carrying out a large-scale phone based 
survey 

 

Mobile phone survey data, described in section 1 of Material and methods, were analysed in 

concert with CDR data, in order to generate a gender prediction model for application to the 

entire CDR user base. The final objective of this model was to split the CDR database by gender 

(based on differences in men’s and women’s observable SIM use episodes), in order to support 
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the development of tools to map women’s and men’s mobility and migration patterns, 

trajectories, and dynamics.  

 

Multiple approaches exist to assign demographics - including gender -  to de-identified CDR 

data. We tested Bayesian geostatistical (BGS) models and machine learning (ML) techniques 

on an initial subset of data collected during the original (2017 - 2018) phone survey. While the 

applied ML techniques (ANNs, RF and GBT) exhibited similar performance, the Bayesian 

geostatistical methods performed poorly in terms of predictive power. The difference in model 

performance most likely originated in the difficulty of exploiting spatial autocorrelation with this 

type of data.  

 

Based on our past experience of implementing artificial neural networks within varied model 

architectures, we took the decision to apply this technique to develop the gender prediction 

models. 

 

5.5.1. Selection of Covariate Layers 
 

As was the case for the high resolution mapping workstream (section 5.4.2.), the predictive 

capacity of the gender-prediction models largely depends on robust selection of a set of 

covariates for model inclusion.  

 

The available, truncated, survey data (n = 1,280) inhibited scope to fully exploit the information 

available in the CDR data. Of the more than 50 explanatory variables derived from the CDR data, 

a subset of 20 variables was ultimately retained. Covariate selection proceeded in two phases. 

The objective was to reduce the number of candidate covariates, so limiting the twin risks of 

model overfitting and chance correlation, while maximising the information contained in the 

surviving covariate set. Preliminary screening was performed using the unsupervised 

methodology (based on distance correlation) detailed above (section 5.4.2). This resulted in a 

subset of covariates, selected to minimise pairwise correlation while retaining their original 

shape. In the second selection phase a jackknife approach (described in section 5.4) was 

applied to identify the most informative subset of surviving covariates.  

 

The final set of 20 covariates were normalised (standardised to have a mean of zero and unit 

standard deviation as dimensionless quantities) to eliminate differences in measurement unit, 

and mitigate differences in value range.  

 

5.5.2. Modelling Architecture 
 

In this study arm, we applied the same feed-forward neural network architecture used to create 

the high resolution maps in the preceding section. The specific architecture is a feed-forward 

multilayer perceptron implemented in Matlab language within the GNU Octave computing 

environment (see section 5.2). As with the ANNs developed for the high resolution mapping, the 

database was split into training, validation, and test sets. The training and validation sets 

(respectively, 60% and 20% of the data) were used to tune modelling parameters, such as the 

activation function or the number of neurons in each layer, using the Levenberg-Marquardt 

training algorithm. 
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The high rate of SIM sharing (47%) reported in the primary survey presented difficulties when it 

came to building a robust set of training data. Of the 47% of survey respondents reporting SIM 

sharing, the majority (35% of all the users) reported use by at least one man and at least one 

women (the remainder reported shared usage among the same sex). In order to build a model 

capable of predicting gender from SIM use behaviour, it is first necessary to identify gender with 

patterns of phone use. The high rate of reported mixed-gender SIM usage problematises the 

binary classification of individual CDRs.  

 

As discussed in section 1.3, previous published work to predict gender from behaviour traces 

in mobile phone data (e.g. Jahani et al., 2017, Frias-Martinez, et al., 2010), has acknowledged 

the theoretical implications of SIM sharing, while, in practice, holding to the ‘single-SIM / single 

user’ assumption. In the absence of prior work to accommodate SIM sharing in demographic 

prediction models, we proceeded systematically. We first tested model performance on an 

artificial set of data. This artificial set was created by stripping all of the SIM records associated 

with mixed-gender SIM use from the dataset. The aim of this exercise was to assess the 

performance of our model against that achieved by previous studies. A classifier based on a 

feed-forward multilayer perceptron was tuned and validated on this artificial set of data. We 

obtained interesting results, which we present in the next sections. 

 

Following the initial testing, we assessed the scope for gender-prediction models to be 

extended to the whole of the CDR dataset. We considered a range of possible solutions to the 

classification problem introduced by SIM sharing. A large proportion of SIM shared by both 

females and males implies that a classic binary-classification modelling is becoming useless 

to acceptably represent the reality described by the surveyed data. This entailed a departure 

from the initial objective of binary classification to a proportion based scheme (continuous-

values regression modelling), whereby we assigned a value to each CDR, representing the 

relative ‘shares’ of reported SIM use by gender.  Values ranged from 0 to 1, with 1 identifying 

use by (only) women, and 0 identifying use by (only) men, with intermediate values 

corresponding to the relative proportion of SIM use by women and men. Section 1 of the report 

details the response codes related to ‘own’ and ‘others’ SIM usage. The classification scheme 

measures each identified ‘SIM users’ use frequency on a five item scale (as reported by the 

survey respondent).  

 

In order to address the classification problem, we proceeded as follows: Based on the relative 

numerical distribution of the categorical classes (the five-item response scale reported in 

section 1.3), we inferred the frequency of usage associated with each class, treating the data-

transformation as an optimisation problem of discrete density estimation. The information 

provided by the distribution of the classes enables the relative frequency of SIM usage 

associated with each item response level to be inferred, such that the estimated frequency 

minimises the amount of additional prior information, or equivalently, maximises the entropy 

(as defined in information theory and statistics) (Watson and Elliot, 2016). The entropy score of 

a given set of survey responses (categorical classes), in relation to their corresponding 

quantitative frequency (unknown: to be estimated) is a measure of the unpredictability of the 

data-driven frequency, or equivalently, its information content.  
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The resulting set of frequencies constitute the unknown density distribution associated with the 

classes. In accordance with the principle of maximum entropy, the distribution with the highest 

entropy is chosen as the least-informative default. Maximum entropy provides an efficient and 

mathematically robust tool for inferring constraint-dependent probability distributions (de 

Martino and de Martino, 2018). 

 

We applied the categorical2freq function of the Mastrave modelling library (de Rigo, 2019) 

within the GNU Octave computing environment. This tool allows all of the survey data 

corresponding to men’s and women’s SIM use (e.g. a situation in which one woman uses the 

SIM ‘often’ -the ‘main user’- and two men (perhaps a husband and son) use the SIM ‘rarely’) to 

be exploited to identify the distribution maximising the entropy. Due to the constrained 

information on sharing practices obtained for the survey sample, bootstrap resampling was 

applied to estimate the uncertainty originating in data scarcity (as well as standard sources of 

uncertainty characteristic of survey data) (detailed in Section 1). With a statistical resampling 

(100 bootstrap runs) of the survey data, we created a set of 100 possible distributions of the 

proportion of time that women and men spent in using a single SIM. 

 

Seeking to maximise the predictive power of our classifier, and of the overall regression model, 

we employed within our ANN the simplified SIEVE method detailed in section 5.4.3. (as applied 

to the high resolution mapping workstream). The model results are detailed in section 5.5.4. 

 
5.5.3. Model Validation 
 

In order to maximise model performance, within a robust model architecture, we split the data 

into training, validation and test sets (employing a 60-20-20 ratio).  

As standard, the performance of a classifier is expressed in terms of the accuracy and AUC 

(average area under the curve). Here we measured model performance (of our classifier) in 

terms of classification accuracy. We also calculated values of sensitivity and specificity to 

detect differences in model performance for gender (proportion) prediction. 

 

The generalisability of the methods we employed to assign (predominant) SIM user gender to 

anonymised individual-SIM level CDR data depends, largely, on the scope for correlations 

detected between the linked CDR and survey data to hold beyond the ‘training phase’. 

 

To assess model performance for both the tuning - and the final validation of the regression 

modelling architecture, we calculated the RMSE, MAE and explained variance, as described 

above (section 5.4.4). 

 

5.5.4. Results 
 

The study results highlight the opportunities, challenges, and limits of models to discern 

women’s and men’s SIM use practices from trace data in the CDR. We first present the results 

obtained by applying a machine-learning classifier to the subset of data for single-gender SIM 

use (i.e. sole SIM use and shared SIM use by (only) women or (only men). We then present 

results for models applied to the full population of SIM users.  
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Data related to non-mixed-gender SIM-sharing customers 
 

We developed an ANN based classifier, and produced a model with good predictive capacity, 

for non-mixed-gender SIM-users. The accuracy of this model was over 70% in validation. These 

results are presented below, and discussed in the next section.  

 

 
Figure 5.13. Confusion matrix for values predicted in validation, applied to the dataset of non-mixed-gender SIM-

users. 

 

Table 5.7. Summary of the classifier applied to predict gender for non-mixed-gender SIM-users. Exp. Var. is the 

proportion of variance explained by the model. 

 Model Accuracy Sensitivity Specificity Exp.Var. 

Training ANN classifier 0.72 0.72 0.72 0.64 

Validation ANN classifier 0.70 0.77 0.58 0.58 

 

Table 5.8. Summary output of the modelling prediction capacity and covariate selection procedure for modelling 

gender. Exp. Var. is the proportion of variance explained by the model. 

 

 ANN classifier (GNU Octave) 

N. of covariates 8 

Exp. Var. 0.58 

Selected Covariates Distance travelled 
Incoming interevent time 

Outgoing call duration 
Incoming call duration 
Subscriber out-degree 
Unique location counts 

Displacement 
Total recharge counts 
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Data related to all customers 
 

Encouraged by the promising results obtained for the subset of non-mixed-gender SIM users, 

we developed a model based on the same ANN architecture to split the entire CDR dataset 

according to gendered usage, based on all of the available survey data on SIM use and sharing. 

The aim of this model was to predict the proportion of usage by women and men for a single 

SIM. The results are presented here and discussed in the next section.  

 
Table 5.9. Summary output for model predictive capacity and covariate selection procedure for predicting gendered 

SIM use using a neural network applied to the whole dataset (containing information on both non-mixed and mixed-

gender sim-sharing). Based on 100 bootstrap runs. Exp.Var. is the proportion of variance explained by the model. 

 

 ANN ( GNU Octave) 

N. of covariates 8 

Exp. Var. 0.07 - 0.13 

Selected 
Covariates 

Distance travelled 
Incoming interevent time 

Outgoing call duration 
Incoming call duration 
Subscriber out-degree 
Unique location counts 

Displacement 
Total recharge counts 

 

 

Figure 5.14 Variability of the model predictive capacity (explained variance values from 100 x bootstrap) in training 

and validation. 
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Figure 5.15. Distribution of gendered SIM use(in the range [0 1], where 1 is 100% usage of the SIM by women). 

Statistical resampling performed with the categorical2freq function in the Mastrave modelling library. The graphs 

show the statistical uncertainty linked with the applied technique. Blue: median; gray: quantiles 25% and 75%; light 

grey: quantiles 5% and 95%. The large quantile uncertainty is an indication of data-scarcity (relative small amount of 

available survey records, n = 1280), and possibly of other sources of data uncertainty linked with the complex survey. 

 

 

5.5.5. Discussion 
 

The results presented in section 5.5.4 demonstrate the difficulty of predicting gendered SIM 

usage from behavioural traces in deidentified mobile phone data (number of calls, duration of 

calls, charging habits, etc.). While slightly more than half (53%) of Ncell subscribers do not 

permit / invite others to use their SIM, over a third of subscribed SIMs (35%) are subject to 

mixed-gender use. Compounding the effects of the relatively small sample of survey data, and 

the consequent higher uncertainty in reconstructing the distribution of gendered SIM use (see 

Fig. 5.15), the ‘noise’ introduced by widespread SIM sharing may have further inhibited the 

models predictive capacity.  

  

To better understand the impact of SIM sharing for predicting gendered SIM use, we tested the 

predictive capacity of a classifier developed on a subset of the linked survey-mobile phone data, 

from which we omitted mixed-gender SIM use (results presented in section 5.5.4). While we 

consider this test data to be ‘artificial’, the results obtained are comparable with those of 

previous studies. For instance, Jahani et al. (2017), report that their best performing model 

achieved an accuracy of 73.6% (for a subscriber base in an unidentified EU country), and 72.9% 

(for a subscriber base in an unidentified South Asian country), with a training set of 5000 linked-

survey observations (when doubling and tripling the set of training data results improved only 

marginally) (Ibid).  
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The accuracy obtained for our ANN based classifier is slightly over 70% in validation. The 

difference in accuracy, of a few percentage points, is likely attributable to the (relatively) small 

set of data with which we had to work. The small training set dictated the adoption of a 

suboptimal analytical approach, inhibiting, for example, robust supervised training of the model. 

Instead, we applied an unsupervised technique for covariate selection (distance correlation, as 

described in sections 5.4.2 and 5.5.1), to mitigate against chance correlation and model 

overfitting.  

 

Based on the promising results obtained for the subset of data exempting mixed-gender SIM 

use, we considered strategies to extend the modelling to incorporate mixed-gender SIM use. 

The original analytical strategy relied on a binary classification scheme to assign a single 

gendered user to each SIM in the set of training data. The binary classification scheme could 

not be justified in the presence of evidence on widespread mixed-gender SIM usage. Instead, 

we assigned each SIM in the set of data a value indicating the proportion [0 1] of use by men 

and women. The survey items on gendered SIM use contained limited information to support a 

proportion-based approach (detailed in section 1.3). Reported use frequency was recorded on 

a standard five-item response scale (never, exceptionally, rarely, sometimes, often) for both the 

respondent and for each additional person the respondent reported to use the SIM. Gender was 

recorded for each reported user, as well as for the respondent (gender was classified in terms 

of kin relationships for related SIM users and as “woman”, “man”, “third gender” for respondents 

and non-kin relations). Response items were developed to prioritise survey feasibility, validity, 

and reliability. 

 

The survey items on SIM use-frequency record the relative use of a single SIM by multiple 

individuals. The items support the classification of gendered SIM use in terms of relative shares 

of use - for each SIM - by men and women (i.e. greater / equal / lesser shares). The modelling 

strategy sought to compensate for the absence of an objective measure of use-frequency, 

definitively linking reported-use-episodes to observable-use-episodes for each (gendered) user. 

The results demonstrate that the relative scarcity of available survey records, and the absence 

of precise information conveyed by them (e.g. ideally, recorded as a percentage or unit of time) 

on individual SIM use, inhibits the models predictive power.  

 

Building on the survey data on gendered sim use, we applied the principle of maximum entropy 

to classify each SIM according to proportion of use by women and men.   The results, reported 

in table 5.9 and in figure 5.14, indicate poor model performance. The model’s lack of predictive 

capacity is likely a function of the low cardinality of the final set of data (imposing sub-optimal 

unsupervised techniques to select the covariate set, and imposing a higher uncertainty in 

reconstructing the distribution of gendered SIM use, see Fig. 5.15), and the imprecision of the 

information on mixed gender phone usage. It is important to note that this situation of imprecise 

information may be expected to be common for similar future surveys. Hence, a methodological 

modelling answer (as the one here discussed) is likely to remain - even in similar future works - 

an essential component to exploit this type of imperfect available information. The results of 

this exploratory research are promising, but subject to the recommendation to complement 

available systematic databases with carefully designed survey protocols (section 1) to estimate 

the otherwise unknown data uncertainty, and partially compensate its severe effects on 

modelling mobility and migration with the available data.  
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Besides this key recommendation, a future valuable extension of this work to predict user 

gender based on behaviour traces in deidentified mobile phone data, would be to explore 

prediction models with aggregated data. The datasets employed by the present study may 

contain sufficient information to identify the proportion of men and women, when aggregated.  

 

For example, exploiting Monte Carlo method based techniques, it is likely that the proportion of 

phone use attributable to men and women can be detected for the municipality and rural 

municipality (i.e. local government) level. Future work will ideally explore the potential and limits 

of the proposed approach before collecting and collating new sets of data - containing 

additional information.  
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Conclusions and Future Work  
 

Artificial Neural Networks and Bayesian Geostatistical models were applied to create high 

resolution, sex-disaggregated maps for literacy, engagement in agriculture and for births at 

health facilities (work package one). The same modelling techniques were also exploited to 

predict user gender for the CDR dataset (work package two).  

 

In the first of two work packages, results highlight that some of the maps produced in this study 

are sufficiently accurate to be summarised at an administrative-unit level relevant for policy and 

decision makers to plan and allocate resources. The maps of female literacy, agriculture based 

occupation and the map related to health facility births have levels of accuracy that make them 

suitable for planning purposes. Equivalent results were not obtained for men.  

 

Based on the wider literature, and informed by a workshop organized with Kathmandu-based 

social scientists to discuss our findings, we hypothesise that cultural aspects are at the basis 

of these differences in the performance of the models. In order to be able to capture these 

sociological aspects, new covariates encompassing factors relating to socio‐economic 

differences should be added into our model architecture. 

 

Within the study, we also explored the possibility to provide frequent updates to the modelled 

layers by exploiting (the daily availability of new) CDR data. The results we obtained show the 

challenge in fully exploit this new source of information. The relatively small number of 

geolocated data points, typical of nationally representative household data, inhibits the full 

exploitation of the model architectures. Although the use of CDR data within the models does 

not seem to extend their predictive ability (subject to verification, on a larger set of data), the 

evidence is that this new source of information is capable of improving model performance at 

local level (section 5.4.6).  

 

With geolocated household surveys being undertaken regularly, the potential exists for 

continuous monitoring of these and other indicators as well as their dynamics. These maps can 

support the development of policy to promote women’s equal opportunities. 

 

The results also highlight that caution is needed, and further investigation is necessary, and 

possibly in multiple time intervals. Creating a superior set of covariates with a higher correlation 

with modelled indicators and especially for males (also including sociological aspects), is 

recommended to lead to improved estimates.  

 

With surveys and covariates available for multiple time intervals, there is the potential to 

undertake multi‐temporal mapping to measure progress towards meeting sustainable 

development goals at fine spatial disaggregation.  

 

The study’s second work package sought to predict gender for a ‘population’ of SIM subscribers, 

based on behaviours observable in their CDR and ‘top-up’ records. When omitting mixed-gender 

SIM sharing records, we obtained model performance equivalent to that reported for previous 
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published studies. Model performance declined with the introduction of mixed-gender SIM 

sharing records (detailed in section 5.4.4). 

 

The findings highlight the need to interrogate the Single-SIM/Sole-user assumption maintained 

in the demographics prediction branch of data-intensive modelling. The potential for ‘SIM 

sharing’ to destabilise results is widely acknowledged, but little investigated, in this literature 

(Jahani et al 2017).  

 

To our knowledge, this study represents the first time that SIM sharing has been rigorously 

assessed and incorporated into model architectures for demographic prediction. The results 

indicate that, notwithstanding high levels of mobile phone ownership in Nepal, shared SIM use 

is common. This finding is consistent with prior survey-based research conducted both in the 

Global North and the Global South, with ‘SIM sharing’ found to occur in settings with close-to-

universal mobile phone ownership, and in the absence of economic compulsions (discussed in 

section 1.3).  

 

The complexity of the “SIM sharing” construct presents challenges in terms of survey 

operationalisation and measurement. From a modelling perspective, the survey’s measurement 

of SIM sharing is suboptimal, artificially limiting the information available to assess SIM sharing 

behaviour. In contrast, an optimal modelling approach , i.e. accessing detailed use frequency 

for each ‘sharer’, recorded as a percentage or unit of time, is impractical from a survey 

perspective, and likely to (wildly) inflate response bias originating in respondent-related error, 

for all but the most numerate of target populations13.  

 

Despite our efforts to resolve the problem through the application of innovative techniques (e.g. 

the principle of maximum entropy detailed in section 5.4.4), the results indicate poor model 

performance. The model’s lack of predictive capacity is likely a function of the limited cardinality 

and available imprecise information on mixed gender phone usage. It is important to note that 

this situation of imprecise information may be expected to be present in similar future surveys. 

Hence, a methodological modelling answer (as the one discussed in this work) is likely to remain 

an essential component to exploit this type of imperfect available information. 

 

While the ‘mismatch’ between optimal and feasible measurements of SIM sharing may be 

expected to be lessened by the development of better proxies, it is unlikely to be wholly 

eliminated. For this reason, to progress the field, it will be necessary to develop or adapt 

methodological approaches capable of exploiting imperfect proxy data on SIM sharing 

practices. While theoretically appealing, ‘survey linkage’ does not offer a panacea. Alternative 

research designs, incorporating experimental approaches, might also be valuably explored. 

 

  

                                                        
13Panel survey methods may offer a promising avenue for future research. Subsequent to panel recruitment, a 

sequence of follow-up contacts, timed to assess the presence of systematic variation in the characteristics of the 
call recipient, would provide an objective indication of the presence and timing of SIM usage.  
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Appendix A 
 

Table A1.1. Set of subscriber CDR features extracted for gender classification. 

  

Data type Feature name Description 

Voice call Displacement 
Displacement from subscribers monthly Home Location, 
measured in km 

Voice call Nocturnal Calls Percentage of calls placed at night (between 8pm and 4am) 

Voice call Incoming call count Count of subscriber’s incoming calls 

Voice call Outgoing call count Count of subscriber’s outgoing calls 

Voice call Incoming call duration Average duration of a subscriber’s incoming calls 

Voice call Outgoing call duration Average duration of a subscriber’s outgoing calls 

Voice call Subscriber out-degree 
Number of unique subscribers which a subscriber has made 
calls to 

Voice call Subscriber in-degree 
Number of unique subscribers which a subscriber has 
received calls from 

Voice call Total international calls 
Number of international calls made or received by a 
subscriber 

Voice call Outgoing international calls Number of international calls made by a subscriber 

Voice call Incoming international calls Number of international calls received by a subscriber 

Voice call Radius of gyration Mobility measure 

Voice call Unique location counts 
Number of unique cell towers from which a subscriber has 
made or received a call 

Voice call Diameter of influence 
Maximum distance between all the towers used by a 
subscriber 

Voice call Distance travelled Average distance travelled 

Voice call Interevent time Average time between call events 

Voice call Incoming interevent time Average time between incoming call events 

Voice call Outgoing interevent time Average time between outgoing call events 

Topup Total recharge amount Total topup expenditure per month 

Topup Total recharge counts Number of topup transactions per month 

Topup Average recharge amount Average topup transaction value per month 

Topup Median recharge amount Median topup transaction value per month 

Topup Minimum recharge amount Minimum topup transaction value per month 

Topup Maximum recharge amount Maximum topup transaction value per month 

Topup Std deviation recharge amount Std deviation topup transaction value per month 
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Table A1.2 Set of aggregate subscriber CDR features extracted for 
development indicator estimation. 
 

Data type Feature name 

Aggregation over subscribers 

Description 

sum median mean std proportion 

Voice call Home location ✘     Modal daily location of a subscriber 

Voice call 
Percentage 
nocturnal calls 

 ✘ ✘ ✘  
Percentage of calls placed at night (between 8pm and 
4am) 

Voice call 
Incoming call 
count 

✘ ✘ ✘ ✘  Count of a subscriber’s incoming calls 

Voice call 
Outgoing call 
count 

✘ ✘ ✘ ✘  Count of a subscriber’s outgoing calls 

Voice call Total call count ✘ ✘ ✘ ✘  Count of all a subscriber’s calls 

Voice call 
Proportion 
outgoing calls 

 ✘ ✘ ✘  
Ratio of a subscriber’s outgoing call count to total call 
count 

Voice call 
Total incoming 
call duration 

✘ ✘ ✘ ✘  Summed durations of a subscriber’s incoming calls 

Voice call 
Mean incoming 
call duration 

✘ ✘ ✘ ✘  Mean duration of a subscriber’s incoming calls 

Voice call 
Median incoming 
call duration 

✘ ✘ ✘ ✘  Median duration of a subscriber’s incoming calls 

Voice call 
Total outgoing 
call duration 

✘ ✘ ✘ ✘  Summed durations of a subscriber’s outgoing calls 

Voice call 
Mean outgoing 
call duration 

✘ ✘ ✘ ✘  Mean duration of a subscriber’s outgoing calls 

Voice call 
Median outgoing 
call duration 

✘ ✘ ✘ ✘  Median duration of a subscriber’s outgoing calls 

Voice call 
Number of 
contacts 

✘ ✘ ✘ ✘  Number of contact of a subscriber 

Voice call 
Subscriber out-
degree 

✘ ✘ ✘ ✘  
Number of unique subscribers which a subscriber has 
made calls to 

Voice call 
Subscriber in-
degree 

✘ ✘ ✘ ✘  
Number of unique subscribers which a subscriber has 
received calls from 

Voice call 
Entropy of 
contacts 

✘ ✘ ✘ ✘  Entropy of a subscriber’s contacts 

Voice call 
Number of  
interactions 

✘ ✘ ✘ ✘  
Number of interactions by a subscriber with their 
contacts 

Voice call 
Median number 
of interactions 
per contact 

✘ ✘ ✘ ✘  
Median number of interactions by a subscriber with 
each contact 

Voice call 
Mean number of 
interactions per 
contact 

✘ ✘ ✘ ✘  
Mean number of interactions by a subscriber with each 
contact 

Voice call 
Percentage 
pareto 
interactions  

 ✘ ✘ ✘  
The Pareto proportion for a subscriber's interactions i.e. 
the fraction of a subscriber's contacts who account for 
80% of their interactions. 

Voice call 
Radius of 
gyration 

 ✘ ✘ ✘  Mobility measure 

Voice call 
Number of 
places 

✘ ✘ ✘ ✘  
Number of unique cell sites from which a subscriber has 
made or received a call 

Voice call Entropy of places  ✘ ✘ ✘  
Entropy of cell sites from which a subscriber has made 
or received a call 

Voice call 
Percentage 
interactions at 
home 

 ✘ ✘ ✘  
Percentage of calls made or received by a subscriber at 
their home location 
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Voice call Frequent places  ✘ ✘ ✘  
Number of locations that account for 80% of the 
locations where the subscriber is seen 

Voice call 
Location 
introversion for 
all interactions 

✘     
Number of all interactions made by a subscriber at a cell 
site at which the interaction counterparty is also located 

Voice call 

Location 
introversion for 
all incoming 
interactions 

✘     
Number of all incoming interactions received by a 
subscriber at a cell site at which the interaction 
counterparty is also located 

Voice call 

Location 
introversion for 
all outgoing 
interactions 

✘     
Number of all outgoing interactions made by a 
subscriber at a cell site at which the interaction 
counterparty is also located 

Device Device brand     ✘ 

Brand of the device most used by a subscriber. Device 
brand distribution is expressed as a proportion of the 
total number of subscribers for each cell site. We use 
the most common device of a subscriber during January 
2015, and assign to the Home Location of the 
subscriber. We only consider brands with greater than 
10000 subscribers. 

Device 
Device Operating 
System 

    ✘ 

Operating System (OS) of the device most used by a 
subscriber. Device OS distribution is expressed as a 
proportion of the total number of subscribers for each 
cell site. We use the most common device of a 
subscriber during January 2015, and assign to the Home 
Location of the subscriber. We only consider OSs with 
greater than 10000 subscribers. 

Device Device size  ✘ ✘ ✘  

Diagonal size in millimetres of the device most used by 
a subscriber. We use the most common device of a 
subscriber during January 2015, and assign to the Home 
Location of the subscriber.  

Device Device weight  ✘ ✘ ✘  

Weight in grammes of the device most used by a 
subscriber. We use the most common device of a 
subscriber during January 2015, and assign to the Home 
Location of the subscriber.  

Device 
Device display 
size 

 ✘ ✘ ✘  

Diagonal size of the display resolution in pixels of the 
device most used by a subscriber. We use the most 
common device of a subscriber during January 2015, 
and assign to the Home Location of the subscriber.  

 

 
Table A3.3: Definitions of the shortlisted indicators  
 

Indicator Definition Denominator Numerator 

1. Literacy Literacy is defined as the ability to 
read a short sentence – wholly or in 
part – from a card. Cards are 
prepared in several languages but 
are non-exhaustive. Respondents for 
whom no appropriate language-card 
is available do not receive a literacy 
result. Blind and visually impaired 
respondents are similarly excluded. 
Respondents with higher than 
secondary schooling are 
automatically recorded as literate, 
with no demonstration requirement. 

Number of women aged 
15-49 (n=12,848) 
 
 
 
 
 
Number of men aged 15-
49 (n = 4,060) 
 

Number of women with 
higher than secondary level 
schooling or who can read a 
short sentence – wholly or 
in part – from a card. (n = 
9,020) 
  
Number of men with higher 
than secondary level 
schooling or who can read a 
short sentence – wholly or in 
part – from a card. (n = 3,631) 

2. Educational 

attainment 

Educational attainment is defined as 
the highest level of schooling 
attended or completed: 

Number of women aged 
15-49 (n=12,862) 
 

Number of women who 
attended secondary school (n 
= 6,435) 
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1. No education  
2. Incomplete primary 
3. Complete primary  
4. Incomplete secondary  
5. Complete secondary  
6. Higher 

 
Number of men aged 15-
49 (n = 4,063) 
 

  
Number of men who attended 
secondary school (n = 2,872) 

3. Market 

labour 

participation 

Market labour participation is 
defined as participation in the labour 
force within a 12 month reference 
period.The DHS defines ‘work’ 
broadly to include paid (whether 
cash and/or in-kind) and unpaid 
work. ‘Own housework’ (reproductive 
labour) is omitted. 

Number of women aged 
15-49 (n = 12,862) 
 
 
 
 
 
Number of men aged 15-
49  (n = 4,063) 

Number of women aged 15-49 

who have undertaken market 

labour within a 12-month 

reference period. (n = 8809) 

 

Number of men aged 15-49 

who have undertaken market 

labour within a 12-month 

reference period. (n = 3,476) 

4. Agriculture-

based 

occupation 

Agriculture-based occupation is 
defined by the respondent’s principal 
occupation (agriculture) and 
employment status within a 12 
month reference period. It includes 
paid (cash and in-kind) and unpaid 
work in agriculture, whether on an 
employed, family enterprise, or self-
employed basis. 

Number of women aged 

15-49 who are currently 

undertaking market 

labour or who have 

undertaken market 

labour within a 12-

month reference period. 

(n = 8809) 

 

Number of men aged 15-

49 who are currently 

undertaking market 

labour or who have 

undertaken market 

labour within a 12-

month reference period. 

(n = 3,476) 

Number of women aged 15-49 

whose primary occupation 

(excluding own housework) 

was agriculture- based, during 

the 12-month reference 

period. (n = 8809) 

 

 

 

Number of men aged 15-49 

whose primary occupation 

(excluding own housework) 

was agriculture-based, during 

the 12-month reference 

period. (n = 8809) 

5. Stunting in 

childhood 

Stunting – impaired growth due to 
chronic malnutrition - is defined as a 
length/height- for-age z score more 
than two standard deviations below 
the World Health Organization 
(WHO) Child Growth Standards 
median.  

Number of living female 
children born 0-59 
months prior to survey 
(n = 1,172) 
 
 
 
Number of living male 
children born 0-59 
months prior to survey 
(n=1,274) 
 

Number of female children 
with a length/height-for- age z-
score more than ‑2.0 SD below 
the WHO Child Growth 
Standards median (n = 415) 
  
 
Number of male children with 
a length/height-for- age z-
score more than ‑2.0 SD below 
the WHO Child Growth 
Standards median (n =468) 

6. Complacenc

y about GBV 

against 

women 

Complacency about GBV against 
women is defined as a stated belief 
that a husband is justified in hitting 
or beating his wife for one or more of 
the following: 
1) Burning food  
2) Arguing with him 
3) Going out without telling him 
4) Neglecting the children 
5) Refusing sexual intercourse with 
him 

Number of women aged 
15-49 (n = 12,862) 
 
 
 
 
 
Number of men aged 15-
49 (n = 4,063) 

Number of women aged 15-49 
who agree that a husband is 
justified in hitting or beating 
his wife in at least one of the 
listed circumstances. (n = 
3,693) 
 
Number of men aged 15-49 
who agree that a husband is 
justified in hitting or beating 
his wife in at least one of the 
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listed circumstances. (n = 
1,051) 

7. Births in 

health 

facilities 

Number of live deliveries in a 
government or private health facility. 

Number of live births to 

women aged 15-49, 

within five- year 

reference period. (n = 

5,038) 

Number of live births to 

women aged 15-49 delivered 

in a health facility, within five-

year reference period. 

(n = 2,809) 

 

 
Table A1.4. GIS and remote sensing dataset used to create the geospatial 
covariates 
 

Dataset Description Data type Year 

Accessibility Accessibility to cities and friction surface from Malaria Atlas 
Project 

Continuous 2015 

Protected Areas WDPA protected terrestrial/maritime areas Vector 2016 

Land cover European Space Agency (ESA) land cover data Categorical 2015 

Ethnicity Geo-referencing Ethnic Power Relations dataset Vector 1946-2013 

Global Human Settlements European Commission Global Human Settlements (GHS) 
layer 

Continuous 2014 

Global Urban Footprint DLR Global Urban Footprint (GUF) layer Continuous 2011 

Urban Extents CIESIN Global Rural Urban Mapping Project (GRUMP) Categorical 2000 

Population Worldpop population count Continuous 2015 

Elevation/Slope Calculated from Shuttle-Radar Topography Mission (SRTM) 
DEM data 

Continuous 2000 

Precipitation Precipitation from Centre for Environmental Data Analysis 
(CEDA) 

Continuous 2001 - 2014 

Potential Evapotranspiration PET from Centre for Environmental Data Analysis (CEDA) Continuous 2001 - 2014 

Temperature Temperature from Centre for Environmental Data Analysis 
(CEDA) 

Continuous 2001 - 2014 

Roads Open Streetmap roads vector dataset Vector 2018 

Rivers Open Streetmap rivers vector dataset Vector 2018 

Schools Open Streetmap school locations dataset Vector 2018 

Crop Dominance NASA GFSAD crop dominance, irrigated cropland extracted Continuous 2010 

Crop Suitability GLUES overall crop suitability Continuous 2011-2040 

Health Facilities Health facilities locations from Humanitarian Data Exchange 
(HDX) 

Vector 2018 

Nighttime Lights Visible Infrared-Imaging Radiometer Suite (VIIRS) night-time 
lights data 

Continuous 2016 

NDVI MODIS Normalised Difference Vegetation Index Continuous 2009-2017 
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EVI MODIS Enhanced Vegetation Index Continuous 2009-2017 

MIR MODIS Middle Infra-red reflectance Continuous 2009-2017 

NPP MODIS Net Primary Productivity Continuous 2009-2014 

GPP MODIS Gross Primary Productivity Continuous 2009-2017 

Total Evapotranspiration MODIS Total Evapotranspiration Continuous 2009-2017 

Potential Evapotranspiration MODIS Potential Evapotranspiration Continuous 2009-2017 

 

 

Geospatial Covariates 
 
Accessibility and Friction Surface 
 

The Malaria Atlas project produced a 1km grid of accessibility to the nearest city for the year of 

2015, where they quantify global accessibility to high density urban centres as measured by 

travel time to the nearest densely-populated area. The friction surface layer enumerates land-

based travel speeds for all pixels, incorporating topographic conditions and features such as 

rivers, railways and national borders. Both raster datasets were selected for use in the analysis.  

Further details can be found at https://map.ox.ac.uk/research-project/accessibility_to_cities/   

 

Protected Areas  
 

Protected terrestrial and maritime areas from the world protected areas database (WDPA) 

vector dataset of protected areas (2016) were obtained 

(https://www.protectedplanet.net/c/world-database-on-protected-areas).  

The dataset provides a polygon and point layer, with buffer zones around the protected areas. 

These buffer zones and points were removed and the protected areas were transformed to 

produce a binary raster dataset. Distance to the areas was calculated and the focal statistics 

tool was applied to produce a final set of continuous raster layers.  

 

Land cover 
 

We downloaded classified land cover for the year 2015 from European Space Agency (ESA) 

Climate Change Initiative (CCI) (https://www.esa-landcover-cci.org/?q=node/164 ). Data was 

resampled and reclassified to produce two sets of layers, the first containing cropland classes 

(both rain-fed and irrigated) and the second containing these cropland classes with the addition 

of mosaic cropland. The data was aggregated to 0.008333 dec. degrees using the maximum 

method for assigning cell values. A distance raster and smoothed raster using the focal 

statistics tool were created for both sets of land cover classes.  

 

Ethnicity 
 

Information on ethnicity in Nepal was extracted from the Ethnic Power Relations (EPR) geo-

referenced dataset (https://icr.ethz.ch/data/epr/core/). This identifies politically relevant 

https://map.ox.ac.uk/research-project/accessibility_to_cities/
https://www.protectedplanet.net/c/world-database-on-protected-areas
https://icr.ethz.ch/data/epr/core/
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groups and their access to state power in every country of the world from 1946-2013. It is 

provided in vector format, so individual ethnic groups were extracted for Nepal and converted 

to raster for analysis, where distance and focal statistics were calculated.  

 

Global Human Settlements  
 

The Global Human Settlements Area Layer (GHSL) from the Joint Research Centre was used 

which identifies built-up area presence from Landsat satellite data. The 2014 continuous 

dataset was selected, where three re-classifications were applied to separate built-up areas. 

Data was reprojected, resampled and 0.1 was used as a standard threshold to extract built-up 

areas of interest, with 0.2 and 0 also selected for comparison. Distance and focal statistics were 

calculated to produce continuous rasters for each reclassification. Further details can be found 

at https://data.jrc.ec.europa.eu 

 

Global Urban Footprint 
 

The global urban footprint (GUF) dataset created by DLR Earth Observation Centre (EOC) was 

obtained (https://www.dlr.de/dlr/). This defines built-up areas as regions featuring man-made 

building structures with a vertical component using satellite data where values of 255 represent 

built-up areas. Built-up areas were extracted, reclassified and the dataset was aggregated using 

the mean. Distance from built-up areas was also calculated for use in the analysis.  

 

GRUMP Urban Extent 
 

The GRUMP Urban Extents grid was obtained from Columbia University Centre for International 

Earth Science Information Network (CIESIN).  This distinguishes urban and rural areas in binary 

raster format based on population count, settlement points and night-time lights data for the 

year 2000. The data was reclassified to produce a binary raster of urban extent, where distance 

and focal statistics were applied. Further details on the dataset can be found at 

http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents 

 

Population 
 

Population count data was utilised from existing WorldPop datasets 

(http://www.worldpop.org.uk/) (WorldPop and CIESIN, 2018). WorldPop population per pixel 

(2015 UN-adjusted) was obtained, which provides gridded population counts adjusted to match 

UN population estimates, created using a random forest estimation technique. Population was 

aggregated using the sum of cell values.  

 

Elevation and Slope 
 

Elevation data for Nepal was obtained using the Shuttle-Radar Topography Mission (SRTM) 

digital elevation model (DEM), downloaded from CGIAR (http://srtm.csi.cgiar.org/). This 

continuous dataset is provided in tiles at 90m spatial resolution. In ArcGIS, tiles were mosaicked 

to produce an elevation layer and slope was calculated from this.  

https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_built_ldsmt_globe_r2015b
https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10002/
http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents
http://www.worldpop.org.uk/
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CEDA Climate Variables 
 

Data obtained from the Centre for Environmental Data Analysis (CEDA) 

(http://catalogue.ceda.ac.uk/ ) was used to extract three variables, precipitation, potential 

evapo-transpiration and temperature for Nepal. Annual mean monthly values were calculated 

for each of these variables for the years 2001-2014, where R was used to download, pre-process 

and calculate these averages. 

 

Distance to Roads 
 

Distance to roads was calculated using Open Street Map (OSM) data extracted for Nepal from 

https://extract.bbbike.org/. Main road classes were selected for use in the distance covariate 

which included those classified as primary, secondary or tertiary. An additional layer including 

smaller residential roads was also created. Distances were calculated in ArcGIS.  

 

Distance to Rivers 
 

Distance to  rivers was calculated using OSM data on waterways extracted for Nepal from 

https://extract.bbbike.org. Distances were calculated in ArcGIS. 

 

Distance to Schools 
 

Distance to schools was calculated using OSM amenity data which was extracted for Nepal as 

point and polygon locations from https://overpass-turbo.eu/ . All data was converted into a 

single point dataset before calculating distances in ArcGIS. 

 

Crop Dominance 
 

The global crop dominance dataset from NASA Global Food Security Support Analysis Data 

(GFSAD) was selected which is created using satellite data for the year 2010 at a 1km 

resolution. Irrigated cropland areas were extracted for use where distance was calculated and 

focal statistics applied to produce continuous raster layers. Further details can be found at 

 

Crop Suitability 
 

The overall crop suitability from GLUES was obtained (http://geoportal-

glues.ufz.de/stories/globalsuitability.html) for the years 2011-2040, shows the potential 

number of suitable crop cycles for 16 crops, considering rain-fed and irrigation on currently 

irrigated areas. The raster was clipped and snapped to the Nepal mask for use in analysis.  

 

Distance to Health Facilities  
 

Distance to healthcare facilities was calculated using point location data produced by the 

Survey Department of Nepal and World Health Organisation (WHO), obtained from the 

http://catalogue.ceda.ac.uk/
https://extract.bbbike.org/
https://extract.bbbike.org/
https://overpass-turbo.eu/
http://geoportal-glues.ufz.de/stories/globalsuitability.html
http://geoportal-glues.ufz.de/stories/globalsuitability.html
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humanitarian data exchange (HDX) (https://data.humdata.org/dataset/nepal-health-facilities-

cod). Distances were calculated in ArcGIS. 

 

VIIRS Nighttime Lights 
 

Visible Infrared-Imaging Radiometer Suite (VIIRS) night-time lights data from on-board the NPP-

Suomi satellite was selected for the area of Nepal. NOAA provides both annual and monthly 

composites of average radiance, the most recent annual composite available for 2015 was 

selected and monthly composites for the year 2016 were obtained to create an annual average 

using a script in R. To create the layer for 2016, files that exclude any data impacted by stray 

light and the cloud free days composites were utilised. Further details can be found at 

https://www.ngdc.noaa.gov/eog 

 

MODIS Vegetation Indices and Mid Infrared reflectance 
 

The MOD13Q1 Version 6 product provides a Vegetation Index (VI) value at a per pixel basis. 

There are two primary vegetation layers that include the NDVI and the Enhanced Vegetation 

Index (EVI), which are provided globally as 16 day composites at a 250m resolution. These were 

extracted for Nepal between December 2009 and January 2017, along with the MIR. R scripts 

were used to pre-process the data and calculate a range of statistics including the mean, 

median, minimum, maximum, sum and sum per year. Final mosaicking, reprojecting and 

resampling was carried out in Arcmap. Further product details can be found at 

https://lpdaac.usgs.gov/products/mod13q1v006/ 

 

MODIS Gross Primary Productivity and Net Primary Productivity  
 

The MOD17A2H MODIS/Terra version 6 product was utilised which provides the gross primary 

productivity as a cumulative 8-day composite at a 500m resolution. It is based on the radiation-

use efficiency concept and data was extracted between December 2009 and January 2017 for 

Nepal. The MOD17A3H MODIS/Terra annual Net Primary Productivity product was obtained 

between the years 2009-2014 as annual composites at 500m. The NPP is derived from the sum 

of the PSN products which are produced by differencing the GPP and Maintenance Respiration. 

R scripts were used to pre-process the data and calculate a range of statistics including the 

mean, median, minimum, maximum, sum and sum per year. Final mosaicking, reprojecting and 

resampling was carried out in Arcmap. Further product details can be found at 

https://lpdaac.usgs.gov/products/mod17a2hv006/ 

 

MODIS total evapotranspiration and total potential evapotranspiration  
 

ET kg/m2 and PET kg/m2 provided in the MOD16A2 MODIS/Terra version 6 product are provided 

as 8-day composites at 500m resolution, where pixel values are the sum of all eight days within 

this period.  Data was extracted between December 2009 and January 2017 for use. R scripts 

were used to pre-process the data and calculate a range of statistics including the mean, 

median, minimum, maximum, sum and sum per year. Final mosaicking, reprojecting and 

https://data.humdata.org/dataset/nepal-health-facilities-cod
https://data.humdata.org/dataset/nepal-health-facilities-cod
https://www.ngdc.noaa.gov/eog
https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mod17a2hv006/
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resampling was carried out in Arcmap. Further product details can be found at 

https://lpdaac.usgs.gov/products/mod16a2v006/ 

 

Maps of the uncertainty values for female literacy, engagement 
in agriculture and health facility births weighted by population 
and aggregated at local level 
 

 

Figure A5.1. Maps of the uncertainty values for female literacy (top), female engagement in agriculture (middle row) 
and health facility births (bottom) created by exploiting GIS, RS and CDR data. The maps show the values of 
uncertainty weighted by population aggregated at local-level. 

https://lpdaac.usgs.gov/products/mod16a2v006/
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Figure A5.2. Maps of the uncertainty values for female literacy (top), female engagement in agriculture (middle row) 

and health facility births (bottom) created by exploiting only GIS and RS data. The maps show the values of 

uncertainty weighted by population aggregated at local-level. 


